Matrix simplification

Algebra Level 3

If A A and B B be two 3 × 3 3 \times 3 matrices with real entries, then the value of the given expression equals A ( A 1 + ( B 1 A ) 1 ) 1 A-(A^{-1} +(B^{-1}-A)^{-1})^{-1}

A B A ABA A 2 B A^2B B A B BAB A B 2 AB^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Karan Chatrath
Nov 18, 2020

Starting with:

( B 1 A ) 1 = ( B 1 B 1 B A ) 1 (B^{-1} - A)^{-1} = (B^{-1} -B^{-1}B A)^{-1} ( B 1 A ) 1 = ( B 1 ( I B A ) ) 1 \implies (B^{-1} - A)^{-1} = \left(B^{-1} (I - BA)\right)^{-1}

Using the fact that ( X Y ) 1 = Y 1 X 1 (XY)^{-1} = Y^{-1}X^{-1} on the RHS gives:

( B 1 A ) 1 = ( I B A ) 1 B \implies (B^{-1} - A)^{-1} = (I - BA)^{-1}B

Now:

A 1 + ( B 1 A ) 1 = A 1 + ( I B A ) 1 B A^{-1} + (B^{-1} - A)^{-1} = A^{-1} + (I - BA)^{-1}B A 1 + ( B 1 A ) 1 = A 1 + ( I B A ) 1 B A A 1 \implies A^{-1} + (B^{-1} - A)^{-1} = A^{-1} + (I - BA)^{-1}BAA^{-1} A 1 + ( B 1 A ) 1 = ( I + ( I B A ) 1 B A ) A 1 \implies A^{-1} + (B^{-1} - A)^{-1} = (I + (I - BA)^{-1}BA)A^{-1}

Now, the identity matrix above can be written as: I = ( I B A ) 1 ( I B A ) I = (I - BA)^{-1}(I-BA) : A 1 + ( B 1 A ) 1 = ( ( I B A ) 1 ( I B A ) + ( I B A ) 1 B A ) A 1 \implies A^{-1} + (B^{-1} - A)^{-1} = ( (I - BA)^{-1}(I-BA) + (I - BA)^{-1}BA)A^{-1} A 1 + ( B 1 A ) 1 = ( I B A ) 1 ( I B A + B A ) A 1 \implies A^{-1} + (B^{-1} - A)^{-1} = (I - BA)^{-1}(I-BA +BA)A^{-1} A 1 + ( B 1 A ) 1 = ( I B A ) 1 A 1 \implies A^{-1} + (B^{-1} - A)^{-1} = (I - BA)^{-1}A^{-1} ( A 1 + ( B 1 A ) 1 ) 1 = A ( I B A ) \implies (A^{-1} + (B^{-1} - A)^{-1})^{-1} = A(I-BA) A ( A 1 + ( B 1 A ) 1 ) 1 = A A ( I B A ) A - (A^{-1} + (B^{-1} - A)^{-1})^{-1} = A - A(I-BA) A ( A 1 + ( B 1 A ) 1 ) 1 = A B A \boxed{A - (A^{-1} + (B^{-1} - A)^{-1})^{-1} = ABA}

Nick Kent
Nov 18, 2020

X = A ( A 1 + ( B 1 A ) 1 ) 1 X = A - {({A}^{-1} + {({B}^{-1} - A)}^{-1})}^{-1}

A X = ( A 1 + ( B 1 A ) 1 ) 1 A - X = {({A}^{-1} + {({B}^{-1} - A)}^{-1})}^{-1}

( A 1 + ( B 1 A ) 1 ) ( A X ) = E ({A}^{-1} + {({B}^{-1} - A)}^{-1}) (A - X) = E

E A 1 X + ( B 1 A ) 1 ( A X ) = E E - {A}^{-1} X + {({B}^{-1} - A)}^{-1} (A - X) = E

A 1 X = ( B 1 A ) 1 ( A X ) {A}^{-1} X = {({B}^{-1} - A)}^{-1} (A - X)

A 1 X = ( B 1 A ) 1 ( A X ) {A}^{-1} X = {({B}^{-1} - A)}^{-1} (A - X)

( B 1 A ) A 1 X = A X ({B}^{-1} - A) {A}^{-1} X = A - X

B 1 A 1 X X = A X {B}^{-1} {A}^{-1} X - X = A - X

B 1 A 1 X = A {B}^{-1} {A}^{-1} X = A

X = A B A X = \boxed{ABA}

Hosam Hajjir
Nov 18, 2020

Since A 1 + ( B 1 A ) 1 = A 1 ( I + A ( B 1 A ) 1 ) A^{-1} + (B^{-1} - A)^{-1} = A^{-1} ( I + A ( B^{-1} - A)^{-1} ) , then

A ( A 1 + ( B 1 A ) 1 ) 1 = A ( I + A ( B 1 A ) 1 ) 1 A A - (A^{-1} + (B^{-1} - A)^{-1})^{-1} = A - (I + A (B^{-1} - A)^{-1})^{-1} A

Taking ( B 1 A ) 1 (B^{-1} - A)^{-1} as a common factor, the above becomes,

= A ( B 1 A ) ( ( B 1 A ) + A ) 1 A = A ( B 1 A ) B A = A ( I A B ) A = A A + A B A = A B A = A - (B^{-1} - A) ((B^{-1} - A) + A)^{-1} A = A - (B^{-1} - A) B A = A - (I - A B) A = A - A + A BA = ABA

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...