Matrix

Algebra Level 3

2x2 square matrix A meets below criteria.

  • (1) A 3 = I A^3=I
  • (2) A I A-I is invertible matrix.

The sum of all component in matrix ( A I ) 60 (A-I)^{ 60 } is 2 a × 3 b { 2 }^{ a }\times { 3 }^{ b } . Evaluate a+b. ( a and b is natural number, and I is 2x2 square identity matrix )


The answer is 31.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Min-woo Lee
Mar 29, 2014

From (1), we get A 3 I = O { A }^{ 3 }-I=O . (O is zero matrix) This is equalvent to

( A I ) ( A 2 + A + I ) = O (A-I)({ A }^{ 2 }+A+I)=O

Multiply inverse of A-I, we get ( A 2 + A + I ) = O ({ A }^{ 2 }+A+I)=O

Since ( A I ) 60 = ( A I ) 2 30 { (A-I) }^{ 60 }={ (A-I) }^{ { 2 }^{ 30 } } , ( A I ) 2 = A 2 2 A + I { (A-I) }^{ 2 }={ A }^{ 2 }-2A+I , A 2 = A I , A I 2 A + I = 3 A { A }^{ 2 }=-A-I,\quad \therefore -A-I-2A+I=-3A .

( 3 A ) 30 = 3 30 A 30 = 3 30 A 3 10 = 3 30 I 10 = 3 30 I = ( 3 30 0 0 3 30 ) { (-3A) }^{ 30 }={ 3 }^{ 30 }\cdot { A }^{ 30 }={ 3 }^{ 30 }\cdot A^{ { 3 }^{ 10 } }={ 3 }^{ 30 }\cdot I^{ 10 }={ 3 }^{ 30 }I=\begin{pmatrix} { 3 }^{ 30 } & 0 \\ 0 & { 3 }^{ 30 } \end{pmatrix}

Therefore sum of all components of matrix ( A I ) 60 { (A-I) }^{ 60 } is 2 1 3 30 { 2 }^{ 1 }\cdot { 3 }^{ 30 } . a=1 and b=30 . Therefore a+b = 31 \boxed{31}

Mark Hennings
Jun 13, 2020

Since A 3 = I A^3 = I , the matrix A A is diagonalisable, so there exists a nonsingular matrix P P such that P A P 1 PAP^{-1} is diagonal, and hence such that P A P 1 = ( u 0 0 v ) PAP^{-1} \; = \; \left(\begin{array}{cc} u & 0 \\ 0 & v \end{array}\right) where u 3 = v 3 = 1 u^3 = v^3 = 1 . Since A I A-I is nonsingular, neither u u nor v v is equal to 1 1 , and so each of u , v u,v is equal to ω \omega or ω 2 \omega^2 . where ω = e 2 π i 3 \omega = e^{\frac{2\pi i}{3}} is the primitive cube root of unity.

Now ω 1 = i 3 ω 2 \omega-1 = -i\sqrt{3}\omega^2 and ω 2 1 = i 3 ω \omega^2-1 = i\sqrt{3}\omega , so that ( u 1 ) 60 = ( v 1 ) 60 = ( ω 1 ) 60 = ( ω 2 1 ) 60 = 3 30 (u-1)^{60} = (v-1)^{60} = (\omega-1)^{60} = (\omega^2-1)^{60} = 3^{30} , and hence P ( A I ) 60 P 1 = ( ( u 1 ) 60 0 0 ( v 1 ) 60 ) = ( 3 30 0 0 3 30 ) = 3 30 I P(A-I)^{60}P^{-1} \; = \; \left(\begin{array}{cc} (u-1)^{60} & 0 \\ 0 & (v-1)^{60}\end{array}\right) \; = \; \left(\begin{array}{cc} 3^{30} & 0 \\ 0 & 3^{30}\end{array}\right) \; = \; 3^{30}I and hence ( A I ) 60 = 3 30 I (A-I)^{60} = 3^{30}I , making the sum of coefficients equal to 2 × 3 30 2 \times 3^{30} . This makes the answer 31 \boxed{31} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...