Matryoshka Sequences

The arithmetic sequence S 1 : 1 , 2 , 3 , 4 , 5 , . . . S_1: 1, 2, 3, 4, 5, ... is the basis for the construction of other sequences S 2 , S 3 , . . . , S_2, S_3, ..., as shown below: S 1 : 1 , 2 , 3 , 4 , 5 , 6 , . . . S 2 : ( 1 + 2 ) , ( 3 + 4 ) , ( 5 + 6 ) , ( 7 + 8 ) , . . . or 3 , 7 , 11 , 15 , . . . S 3 : ( 3 + 7 ) , ( 11 + 15 ) , . . . \begin{aligned} S_1: &\ 1, 2, 3, 4, 5, 6, ...\\ S_2: &\ (1 + 2), (3 + 4), (5 + 6), (7+8), ... \quad \text{or} \quad 3, 7, 11, 15, ...\\ S_3: &\ (3 + 7), (11 + 15), ...\\ &\vdots\end{aligned} What is the sum of the first 100 terms of S 100 ? S_{100}?

50 ( 2 98 + 2 197 + 99 × 2 198 ) 50\big(2^{98} + 2^{197} + 99 \times 2^{198}\big) 50 ( 2 100 + 2 98 + 50 × 2 200 ) 50\big(2^{100} + 2^{98} + 50 \times 2^{200}\big) 50 ( 2 100 + 2 200 + 100 × 2 200 ) 50\big(2^{100} + 2^{200} + 100 \times 2^{200}\big) 50 ( 2 99 + 2 198 + 99 × 2 198 ) 50\big(2^{99} + 2^{198} + 99 \times 2^{198}\big)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Romain Bouchard
Apr 7, 2018

The sum of the 100 100 first terms of S 100 S_{100} is...

  • the same as the sum of the first 200 200 terms of S 99 S_{99}

  • the same as the sum of the first 400 400 terms of S 98 S_{98}

...

  • the same as the sum of the first 100. 2 n 100.2^{n} terms of S 100 n S_{100-n}

...

  • the same as the sum of the first 100. 2 99 100.2^{99} terms of S 1 S_1 i.e. the sum of the first 100. 2 99 100.2^{99} integers, which can be written as :

100. 2 99 ( 1 + 100. 2 99 ) 2 = 50 ( 2 99 ( 1 + 100. 2 99 ) = 50 ( 2 99 + 2 99 . ( 1 + 99 ) . 2 99 ) = 50 ( 2 99 + 2 198 + 99 × 2 198 ) \frac{100.2^{99}(1+100.2^{99})}{2} = 50(2^{99}(1+100.2^{99}) = 50(2^{99}+2^{99}.(1+99).2^{99}) = 50(2^{99}+2^{198}+99\times 2^{198})

Stephen Mellor
Apr 7, 2018

Firstly, we see that the sum of the first k k terms of S n S_n is the same as the sum of the first k 2 \frac{k}{2} terms of S n + 1 S_{n+1} .

For example, the first 6 6 terms of S 1 S_1 sum to ( 1 ) + ( 2 ) + ( 3 ) + ( 4 ) + ( 5 ) + ( 6 ) = 21 (1) + (2) + (3) + (4) + (5) + (6) = 21 . Also, the first 3 3 terms of S 2 S_2 sum to ( 1 + 2 ) + ( 3 + 4 ) + ( 5 + 6 ) = 21 (1+2) + (3+4) + (5+6) = 21 .


Therefore, Sum of the first 100 terms of S 100 = Sum of the first ( 100 2 1 ) terms of S 99 \text{Sum of the first } 100 \text{ terms of } S_{100} = \text{Sum of the first } (100 \cdot 2^1) \text{ terms of } S_{99} Sum of the first 100 terms of S 100 = Sum of the first ( 100 2 2 ) terms of S 98 \text{Sum of the first } 100 \text{ terms of } S_{100} = \text{Sum of the first } (100 \cdot 2^2) \text{ terms of } S_{98} Sum of the first 100 terms of S 100 = Sum of the first ( 100 2 3 ) terms of S 97 \text{Sum of the first } 100 \text{ terms of } S_{100} = \text{Sum of the first } (100 \cdot 2^3) \text{ terms of } S_{97} \vdots Sum of the first 100 terms of S 100 = Sum of the first ( 100 2 99 ) terms of S 1 \text{Sum of the first } 100 \text{ terms of } S_{100} = \text{Sum of the first } (100 \cdot 2^{99}) \text{ terms of } S_{1}


Now we know that k = 1 n k = n ( n + 1 ) 2 \displaystyle \sum_{k=1}^n k = \frac{n(n+1)}{2} So, k = 1 100 2 99 k = ( 100 2 99 ) ( 100 2 99 + 1 ) 2 \displaystyle \sum_{k=1}^{100 \cdot 2^{99}} k = \frac{(100 \cdot 2^{99})(100 \cdot 2^{99}+1)}{2} k = 1 100 2 99 k = ( 50 2 99 ) ( 100 2 99 + 1 ) \displaystyle \sum_{k=1}^{100 \cdot 2^{99}} k = (50 \cdot 2^{99})(100 \cdot 2^{99}+1) k = 1 100 2 99 k = 50 ( 100 2 99 2 99 + 2 99 ) \displaystyle \sum_{k=1}^{100 \cdot 2^{99}} k = 50 \cdot (100 \cdot 2^{99} \cdot 2^{99}+ 2^{99}) k = 1 100 2 99 k = 50 ( 100 2 198 + 2 99 ) \displaystyle \sum_{k=1}^{100 \cdot 2^{99}} k = 50 \cdot (100 \cdot 2^{198} + 2^{99}) k = 1 100 2 99 k = 50 ( 2 99 + 2 198 + 99 × 2 198 ) \displaystyle \sum_{k=1}^{100 \cdot 2^{99}} k = 50(2^{99} + 2^{198} + 99 \times 2^{198})

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...