Matt's means

Algebra Level 1

The arithmetic mean, geometric mean, and harmonic mean of a , b , c a,b,c are 8, 5, 3, respectively. What is the value of a 2 + b 2 + c 2 a^2 + b^2 + c^2 ?

This problem is posed by Matt .

Details and Assumptions:

The arithmetic mean, geometric mean, and harmonic mean of n n numbers a 1 , a 2 , , a n a_1, a_2, \ldots, a_n are (respectively)

i = 1 n a n n , i = 1 n a n n , ( n i = 1 n 1 a n ) . \frac {\sum_{i=1}^{n} a_n}{n},\quad \sqrt[n]{\prod_{i=1}^{n} a_n},\quad \left( \frac{n} { \sum_{i=1}^{n} \frac{1}{a_n} } \right) .


The answer is 326.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Parth Chopra
Oct 27, 2013

From the definitions of the three means, we can rewrite the three statements in the following ways.

1: a + b + c = 24 a + b + c = 24

2: a b c = 125 abc = 125

3: 3 a b c a b + b c + a c = 3 \frac{3abc}{ab + bc + ac} = 3

Substituting the second eq. into the third one, we get that

a b + b c + a c = 125 ab + bc + ac = 125

By squaring the first equation, we get the following:

a 2 + b 2 + c 2 + 2 ( a b + b c + a c ) = 576 a^{2} + b^{2} + c^{2} + 2(ab + bc + ac) = 576

Now, we can isolate for a 2 + b 2 + c 2 a^{2} + b^{2} + c^{2} by putting in what we know.

a 2 + b 2 + c 2 a^{2} + b^{2} + c^{2} = 576 2 ( 125 ) 576 - 2(125)

a 2 + b 2 + c 2 a^{2} + b^{2} + c^{2} = 326 326

Christopher Boo
Oct 28, 2013

From the problem we knew that:

a + b + c 3 = 8 \frac{a+b+c}{3}=8

a b c 3 = 5 \sqrt[3]{abc}=5

3 1 a + 1 b + 1 c = 3 \frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=3

Arrange them we get:

( 1 ) : a + b + c = 24 (1): a+b+c=24

( 2 ) : a b c = 125 (2): abc=125

( 3 ) : 1 a + 1 b + 1 c = 1 (3): \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1

a b + b c + a c a b c = 1 \frac{ab+bc+ac}{abc}=1

a b + b c + a c = 125 ab+bc+ac=125

Next,

a 2 + b 2 + c 2 a^2+b^2+c^2

= ( a + b + c ) 2 2 ( a b + b c + a c ) =(a+b+c)^2-2(ab+bc+ac)

= 2 4 2 2 ( 125 ) =24^2-2(125)

= 326 =326

Nice solution @Christopher Boo

Mardokay Mosazghi - 6 years, 10 months ago
Rohit Kanrar
Oct 28, 2013

Arithmetic Mean = a + b + c 3 = 8 = \frac{a+b+c}{3} = 8 Hence, ( a + b + c ) = 24. (a+b+c)=24.

Geometric Mean = ( a b c ) 1 / 3 = 5. =(abc)^{1/3}=5. then, a b c = 125. abc=125.

Harmonic Mean = 3 1 a + 1 b + 1 c = 3 =\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=3 o r , 1 a + 1 b + 1 c = 1 or, \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1 o r , a b c a b + b c + a c = 1 or, \frac{abc}{ab+bc+ac}=1 o r , a b + b c + a c = a b c = 125 or, ab+bc+ac=abc=125

We know that, a 2 + b 2 + c 2 = ( a + b + c ) 2 2 ( a b + a c + b c ) a^{2}+b^{2}+c^{2}=(a+b+c)^{2}-2(ab+ac+bc) = 2 4 2 2 × 125 = 576 250 = 326 =24^{2}-2\times 125 = 576-250=\boxed{326}

Suryansh Tiwari
Oct 28, 2013

(a +b+c)/3 =8

thus a+b+c =24

(abc)^1/3 =5

abc=125

3/(1/a +1/b+1/c) =3

hence abc= ab+bc+ca

(a+b+c)^2 =a^2 +b^2 +c^3 +2(ab +bc+ca)

substituting all given values

a^2+b^2+c^2=326

Chengfang Goh
Oct 27, 2013

arithmetic mean=8= (a+b+c)/3

a+b+c=8x3=24

geometric mean=5=cube root of (abc)

abc=5^3=125

harmonic mean=3=3/[(1/a)+(1/b)+(1/c)]

(1/a)+(1/b)+(1/c)=3/3=1

(bc+ac+ab)/abc = 1

(bc+ac+ab)/125=1

(bc+ac+ab)=125

(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)

a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ca)=24^2-2(125)=326

Zubayr Khalid
Nov 2, 2013

a+b+c=(8 3)=24 abc=125 1/a+1/b+1/c=3 1/3=1 ab+bc+ca=125 a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ca)

Qi Huan Tan
Nov 1, 2013

The conditions in the problem can be written as a + b + c = 24 , a b c = 125 , 1 a + 1 b + 1 c = 1 a+b+c=24, abc=125, \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1 . The third equation also can be written as a b + b c + c a a b c = 1 \frac{ab+bc+ca}{abc}=1 . By the second equation, a b + b c + c a = 125 ab+bc+ca=125 . Square the first equation, we get a 2 + b 2 + c 2 + 2 a b + 2 b c + 2 c a = 576 a^2+b^2+c^2+2ab+2bc+2ca=576 , a 2 + b 2 + c 2 = 326 a^2+b^2+c^2=326 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...