Matt's Recurrence

Geometry Level 5

Let θ = sin 1 7 25 \theta = \sin ^{-1} \frac {7}{25} . Consider the sequence of values defined by a n = sin ( n θ ) a_n = \sin ( n \theta) . They satisfy the recurrence relation a n + 2 = k 1 a n + 1 + k 0 a n , n N a_{n+2} = k_1 a_{n+1} + k_0 a_{ n}, \quad n \in \mathbb{N} for some (fixed) real numbers k 1 , k 0 k_1 , k_0 . The sum k 1 + k 0 k_1 + k_0 can be written as p q \frac {p}{q} , where p p and q q are positive coprime integers. What is the value of p + q p + q ?

This problem is proposed by Matt .

Details and assumptions

By definition, sin 1 : [ 1 , 1 ] [ π 2 , π 2 ] \sin ^{-1} : [-1 ,1 ] \rightarrow [ - \frac {\pi}{2} , \frac {\pi}{2} ] .


The answer is 48.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

12 solutions

Lorenz Eberhardt
May 20, 2014

Using the relation sin ( x ± y ) = sin x cos y ± cos x sin y \sin(x \pm y)=\sin x \cos y \pm \cos x \sin y , one can write:

sin ( ( n + 2 ) θ ) = sin ( ( n + 1 ) θ ) cos θ + cos ( ( n + 1 ) θ ) sin θ \sin((n+2) \theta)=\sin((n+1) \theta) \cos \theta+\cos((n+1)\theta) \sin \theta

= 2 sin ( ( n + 1 ) θ ) cos θ cos θ sin ( ( n + 1 ) θ ) + sin θ cos ( ( n + 1 ) θ ) =2 \sin((n+1) \theta) \cos \theta-\cos \theta \sin((n+1)\theta)+\sin \theta \cos((n+1)\theta)

= 2 sin ( ( n + 1 ) θ ) cos θ sin ( n θ ) =2 \sin((n+1) \theta) \cos \theta-\sin(n\theta)

Hence k 1 = 2 cos θ = 2 1 sin 2 θ = 2 1 ( 7 25 ) 2 = 48 25 k_1=2 \cos \theta=2 \sqrt{1-\sin^2 \theta}=2\sqrt{1-\left(\frac{7}{25}\right)^2}=\frac{48}{25} and k 0 = 1 k_0=-1 . So, p q = 48 25 1 = 23 25 \frac{p}{q}=\frac{48}{25}-1=\frac{23}{25} and p + q = 23 + 25 = 48 p+q=23+25=48

Most solutions merely found values of k 1 , k 0 k_1, k_0 that held for small values of n n , and did not justify why the recurrence relation must hold for all values of n n . In fact, it even holds for negative integers!

This shows you how to get the recurrence relation for any value of θ \theta .

Calvin Lin Staff - 7 years ago

Log in to reply

In fact, it even holds for negative integers!

True. Indeed, it holds for any n R n \in \mathbb{R} .

Peter Byers - 5 years, 6 months ago

This effort showing above is absolutely not necessary since one has only to consider the first four members of the sequence to obtain the result by solving a linear equation system!!!

Andreas Wendler - 5 years, 4 months ago

As sin ( θ ) = 7 25 \sin(\theta) = \frac{7}{25} , then cos ( θ ) = 24 25 \cos(\theta) = \frac{24}{25} . Now, we also have

( sin ( ( n + 2 ) θ ) + sin ( n θ ) = 2 sin ( ( n + 1 ) θ ) cos ( θ ) (\sin((n+2)\theta) + \sin(n\theta) = 2\sin((n+1)\theta)\cos(\theta) a n + 2 + a n = 2 a n + 1 24 25 a_{n+2} + a_n = 2 a_{n+1} \cdot \frac{24}{25} a n + 2 = 48 25 a n + 1 a n a_{n+2} = \frac{48}{25} a_{n+1} - a_n

Hence, k 1 = 48 25 , k 0 = 1 k_1 = \frac{48}{25}, k_0 = -1 and k 1 + k 0 = 23 25 k_1+k_0 = \frac{23}{25} from which it follows that p = 23 , q = 25 p = 23, q = 25 and p + q = 48 p+q = 48 .

Wei Liang Gan
May 20, 2014

Using the factor formula, s i n ( n θ ) + s i n ( ( n 2 ) θ ) = 2 s i n ( ( n 1 ) θ ) c o s ( θ ) sin(n \theta )+sin((n-2) \theta) = 2sin((n-1) \theta )cos(\theta ) s i n ( n θ ) = ( 2 c o s ( θ ) ) s i n ( ( n 1 ) θ ) + ( 1 ) ( s i n ( ( n 2 ) θ ) \Rightarrow sin(n \theta )= (2cos(\theta ))sin((n-1) \theta )+(-1)(sin((n-2) \theta) Hence, k 0 = 2 c o s ( θ ) = 2 1 s i n 2 ( θ ) = 2 1 ( 7 25 ) 2 = 48 25 k_0 = 2cos(\theta ) = 2\sqrt{1-sin^2(\theta )} = 2 \sqrt{1-(\frac{7}{25})^2} = \frac{48}{25} since θ \theta is acute from range and k 1 = 1 k_1 = -1 . Therefore, k 0 + k 1 = 48 25 1 = 23 25 k_0+k_1 = \frac{48}{25}-1=\frac{23}{25} so answer is 23 + 25 = 48 23+25=48

Dirk Basson
May 20, 2014

Note that if sin θ = 7 25 \sin\theta=\frac{7}{25} , then cos 2 θ = 1 ( 7 25 ) 2 = ( 24 25 ) 2 \cos^2\theta=1-(\frac{7}{25})^2=(\frac{24}{25})^2 , and since π / 2 < θ π / 2 \pi/2<\theta\le \pi/2 , we have cos θ 0 \cos\theta\ge 0 . Hence cos θ = 24 25 \cos\theta=\frac{24}{25} .

Using the compound angle formulae for sin \sin we obtain sin ( n + 2 ) θ = sin ( n + 1 ) θ cos θ + sin θ cos ( n + 1 ) θ = 24 25 a n + 1 + sin θ cos ( n + 1 ) θ \sin(n+2)\theta=\sin(n+1)\theta\cos\theta+\sin\theta\cos(n+1)\theta=\frac{24}{25}a_{n+1}+\sin\theta\cos(n+1)\theta

Now we use a trick and recognize the last term as part of sin ( ( n + 1 ) 1 ) θ \sin((n+1)-1)\theta . Hence sin θ cos ( n + 1 ) θ = ( sin θ cos ( n + 1 ) θ cos θ sin ( n + 1 ) θ ) + cos θ sin ( n + 1 ) θ = 24 25 sin ( n + 1 ) θ sin n θ \sin\theta\cos(n+1)\theta=(\sin \theta\cos(n+1)\theta-\cos\theta\sin(n+1)\theta)+\cos\theta\sin(n+1)\theta=\frac{24}{25}\sin(n+1)\theta-\sin n\theta and a n + 2 = 24 25 a n + 1 + 24 25 a n + 1 a n = 48 25 a n + 1 a n . a_{n+2}=\frac{24}{25}a_{n+1}+\frac{24}{25}a_{n+1}-a_n=\frac{48}{25}a_{n+1}-a_n. So, k 1 = 48 25 k_1=\frac{48}{25} , k 0 = 1 k_0=-1 , k 1 + k 2 = 23 25 k_1+k_2=\frac{23}{25} , and the answer is 48 48 .

Arjen Vreugdenhil
Dec 17, 2016

The recurrence relation a n + 2 = k 1 a n + 1 + k 0 a n a_{n+2} = k_1a_{n+1} + k_0a_n has the general solution a n = A 1 c 1 n + A 2 c 2 n a_n = A_1c_1^n + A_2c_2^n , so in this case a n = sin ( n θ ) = 1 2 i ( e n θ i e n θ i ) c 1 = e θ i , c 2 = e θ i . a_n = \sin(n\theta) = \frac1{2i}(e^{n\theta i} - e^{-n\theta i})\ \ \therefore\ \ \ c_1 = e^{\theta i},\ \ c_2 = e^{-\theta i}.

The bases c 1 , 2 c_{1,2} are the solutions of the characteristic equation c 2 k 1 c k 0 = 0 , c^2 - k_1c - k_0 = 0, , which here is equivalent to 0 = ( c c 1 ) ( c c 2 ) c 2 k 1 c k 0 k 1 = c 1 + c 2 , k 2 = c 1 c 2 . 0 = (c-c_1)(c-c_2) \equiv c^2 - k_1c - k_0\ \ \ \therefore\ \ \ k_1 = c_1 + c_2,\ k_2 = -c_1c_2. Thus k 1 = e θ i + e θ i = 2 cos θ = 2 1 ( 7 25 ) 2 = 2 24 25 ; k_1 = e^{\theta i} + e^{-\theta i} = 2\cos\theta = 2\sqrt{1-(\tfrac7{25})^2} = 2\cdot \frac{24}{25}; k 2 = e θ i e θ i = e θ i θ i = 1. k_2 = -e^{\theta i}e^{-\theta i} = -e^{\theta i - \theta i} = -1. The answer is therefore k 1 + k 2 = 2 24 25 1 = 13 25 48 . k_1 + k_2 = 2\cdot \frac{24}{25} - 1 = \frac{13}{25}\ \ \ \Longrightarrow\ \ \ \boxed{48}.

Mike Yang
May 20, 2014

This question boils down to a system of equation.

If sin θ = 7 25 \sin \theta = \frac {7}{25} , using the Pythagorean theorem, we arrive at cos θ = 24 25 \cos \theta = \frac {24}{25} .

Using the double angle identity:

sin 2 θ = 2 sin θ cos θ \sin 2\theta = 2\sin \theta \cos\theta

sin 2 θ = 2 × 7 25 × 24 25 \sin 2\theta= 2 \times \frac {7}{25} \times \frac {24}{25}

sin 2 θ = 336 625 \sin 2\theta= \frac {336}{625}

From the equation given:

sin 2 θ = k 1 sin θ + k 0 sin 0 \sin 2\theta = k_1 \sin \theta + k_0 \sin 0

336 625 = k 1 × 7 25 \frac {336}{625} = k_1 \times \frac {7}{25}

k 1 = 48 25 k_1 = \frac {48}{25}

Using the triple angle identity:

sin 3 θ = 4 sin 3 θ + 3 sin θ \sin 3 \theta = -4 \sin^3 \theta + 3 \sin \theta

sin 3 θ = 4 × ( 7 25 ) 3 + 3 × 7 25 \sin 3 \theta = -4 \times (\frac {7}{25})^3 + 3 \times \frac {7}{25}

sin 3 θ = 11753 15625 \sin 3 \theta = \frac {11753}{15625}

sin 3 θ = k 1 sin 2 θ + k 0 sin θ \sin 3 \theta = k_1 \sin 2\theta + k_0 \sin \theta

11753 15625 = 48 25 × 336 625 + k 0 × 7 25 \frac {11753}{15625} = \frac {48}{25} \times \frac {336}{625} + k_0 \times \frac {7}{25}

k 0 = 1 k_0 = -1

k 0 + k 1 = 48 25 1 k_0 +k_1 = \frac {48}{25} - 1

k 0 + k 1 = 23 25 k_0 +k_1 = \frac {23}{25}

p = 23 , q = 25 , p + q = 48 p = 23, q = 25, p+q = 48

Best explanation

Terry Smith - 5 years, 11 months ago
Peter Byers
Dec 3, 2015

The equation says that I m ( Q z n + 1 ) = 0 Im(Qz^{n+1})=0 , where z = e i θ z=e^{i\theta} and Q = k 1 + k 0 z 1 z Q = k_1 + k_0z^{-1} - z . But that will happen for all n N n \in \mathbb{N} if and only if Q = 0 Q=0 . (If Q 0 Q \ne 0 then Q z Qz and Q z 2 Qz^2 cannot both be real, since z z is non-real.)

So the condition is equivalent to z = k 1 + k 0 z z= k_1 + k_0 \overline{z} . Since k 1 , k 0 k_1, k_0 are real, this gives k 0 = 1 k_0=-1 and the equation becomes k 1 = z + z = 2 c o s ( θ ) = 48 25 k_1= z+ \overline{z} = 2 cos(\theta) =\frac{48}{25} (using Pythagoras). Arithmetic gives 48 48 as the answer.

Bhargav Das
May 20, 2014

We can easily deduce that s i n θ sin \theta = 7/25, we therefore get c o s θ cos\theta = 24/25 Now, putting n = 1 and n = 2 in the recurrence relation we get two equations: a n + 2 a_{n+2} = a 3 a_3 = s i n 3 θ sin 3\theta = k 1 k_1 s i n 2 θ sin 2\theta + k 0 k_0 s i n θ sin \theta … (i) &
a n + 2 a_{n+2} = a 4 a_4 = s i n 4 θ sin 4\theta = k 1 k_1 s i n 3 θ sin 3\theta + k 0 k_0 s i n 2 θ sin 2\theta …(ii)

We know, s i n 3 θ sin 3\theta = 3 s i n θ sin \theta – 4 s i n 3 θ sin^3 \theta and s i n 2 θ sin 2\theta = 2 s i n θ sin \theta s i n θ sin \theta and s i n 4 θ sin 4\theta = 4 s i n θ sin \theta s i n θ sin \theta [1-2 s i n 2 θ sin^2\theta ]

Substituting values of s i n θ sin \theta and c o s θ cos \theta in (i) and (ii), we get,

11753 = 8400 k 1 k_1 + 4375 k 0 k_0 => 564144 = 403200 k 1 k_1 + 210000 k 0 k_0 [ On multiplying L.H.S & R.H.S by 48 ]…(iii) &

354144=293825 k 1 k_1 +210000 k 0 k_0 ...(iv)

Solving (iii) and (iv), we get, k 1 k_1 = 48/5 and k 0 k_0 = -1

Therefore, k 0 k_0 + k 1 k_1 = 43/5 =p/q Since, gcd (43, 5) = 1 , therefore, p+q= 43+5 = 48.

G Major
May 20, 2014

We have a 0 = 0 , a 1 = sin θ , a 2 = sin 2 θ , a 3 = sin 3 θ . a_0=0,\ a_1=\sin \theta,\ a_2=\sin 2\theta,\ a_3=\sin 3\theta. and because a n + 2 = k 1 a n + 1 + k 0 a n , a_{n+2}=k_1a_{n+1}+k_0a_n, so we obtain sin 2 θ = k 1 sin θ \sin 2\theta=k_1\sin \theta inferred k 1 = 2 cos θ , k_1=2\cos \theta, So, we have sin 3 θ = 2 cos θ sin 2 θ + k 0 sin θ \sin 3\theta=2\cos \theta\sin 2\theta+k_0\sin \theta inferred k 0 sin θ = sin 3 θ 2 cos θ sin 2 θ = sin θ k_0\sin \theta=\sin 3\theta-2\cos \theta\sin 2\theta=-\sin \theta inferred k 0 = 1 k_0=-1 Now, we have k 0 + k 1 = 2 cos θ 1 = 2 1 sin 2 θ 1 = 23 25 k_0+k_1=2\cos \theta-1=2\sqrt{1-\sin^2 \theta}-1=\frac{23}{25} (because sin θ = 7 25 \sin \theta=\frac{7}{25} ) Finally, we obtain p + q = 23 + 25 = 48 p+q=23+25=48

Advitiya Brijesh
May 20, 2014

See, as given in the equation $\theta=sin^{-1} \frac{7}{25}$

and it satisfies, $a {n}=\sin(n \theta)$, $a {n+2}=k {1}a {n+1}+k {0}a {n}$ Now, we find that $a {1}=\frac{7}{25}$ $a {2}=\frac{336}{625}$ $a {3}=\frac{11753}{15625}$ $a {4}=\frac{354144}{390625}$

Forming two equations as, $a {3}=k {1}a {2} + k {0}a {1}$ $a {4}=k {1}a {3} + k {0}a {2}$

solving these using above constraints, we do get, $k {1}=\frac{48}{25}$ and $k {0}=-1$ so, $k {1}+k {0}=\frac{23}{25}$

so, $\boxed {p+q=48}$

Nathan Ramesh
Apr 25, 2014

We the fact that sin(na)=2sin((n-1) a) cos(a)-sin((n-2)a)

Luuk Weyers
Mar 27, 2014

We'll start by calculating some values of a n a_n .

a 0 = sin 0 = 0. a_0 = \sin 0 = 0.

a 1 = sin θ = 7 25 . a_1 = \sin \theta = \frac{7}{25}.

cos θ = 1 sin 2 θ = 24 25 . \cos \theta = \sqrt{1-\sin^2 \theta} = \frac{24}{25}.

a 2 = sin 2 θ = 2 sin θ cos θ = 336 625 . a_2 = \sin 2\theta = 2 \sin \theta \cos \theta = \frac{336}{625}.

cos 2 θ = 1 2 sin 2 θ = 527 625 . \cos 2\theta = 1-2\sin^2 \theta = \frac{527}{625}.

a 3 = sin 3 θ = sin θ cos 2 θ + cos θ sin 2 θ = 11753 15625 . a_3 = \sin 3\theta = \sin \theta \cos 2\theta + \cos \theta \sin 2\theta = \frac{11753}{15625}.

Now that we have some values of a n a_n , we can insert them into the recursive formula to determine k 1 k_1 and k 0 k_0 .

First: a 2 = k 1 a 1 + k 0 a 0 336 625 = 7 25 k 1 + 0 k 0 k 1 = 48 25 { a }_{ 2 }={ k }_{ 1 }{ a }_{ 1 }+{ k }_{ 0 }{ a }_{ 0 } \Leftrightarrow \frac { 336 }{ 625 } =\frac { 7 }{ 25 } { k }_{ 1 }+0{ k }_{ 0 } \Leftrightarrow { k }_{ 1 }=\frac { 48 }{ 25 } .

And finally a 3 = k 1 a 2 + k 0 a 1 11753 15625 = 48 25 336 625 + k 0 7 25 k 0 = 1 { a }_{ 3 }={ k }_{ 1 }{ a }_{ 2 }+{ k }_{ 0 }{ a }_{ 1 }\Leftrightarrow \frac { 11753 }{ 15625 } =\frac { 48 }{ 25 } \frac { 336 }{ 625 } +{ k }_{ 0 }\frac { 7 }{ 25 } \Leftrightarrow { k }_{ 0 }=-1 .

So k 1 + k 0 = 48 25 1 = 23 25 k_1+k_0=\frac{48}{25}-1=\frac{23}{25} . And therefore the answer is 23 + 25 = 48 23+25=\fbox{48} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...