Max and min part 2

Algebra Level 5

x + y + z + x y + y z + x z \large x+y+z+xy+yz+xz

If x , y x,y and z z are non-negative reals that satisfy x 2 + y 2 + z 2 = 1 x^2+y^2+z^2=1 , find the sum of the maximum and minimum values of the expression above.

Submit your answer to 2 decimal places.


The answer is 3.73.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

P C
Feb 19, 2016

Call the expression S ,now using Cauchy-Schwarz Inequality we get S 3 ( x 2 + y 2 + z 2 ) + x 2 + y 2 + z 2 = 1 + 3 S\leq \sqrt{3(x^2+y^2+z^2)}+x^2+y^2+z^2=1+\sqrt{3} The equality holds when x = y = z = 1 3 x=y=z=\frac{1}{\sqrt{3}}

We set x + y + z = t x+y+z=t , from the condition we have t 2 2 ( x y + y z + x z ) = 1 x y + y z + x z = t 2 1 2 0 t^2-2(xy+yz+xz)=1\Rightarrow xy+yz+xz= \frac{t^2-1}{2}\geq 0 So t 1 t\geq 1 , therefore S = t + t 2 1 2 1 S=t+\frac{t^2-1}{2}\geq 1 The equality holds when one variable is equal to 1 and the rest are equal to 0

So finally the sum is 2 + 3 3.73 2+\sqrt{3}\approx 3.73

Hello @Gurīdo Cuong , can you help me finding out flaw in the following: A p p l y i n g C S , ( x 2 + y 2 + z 2 + z 2 + y 2 + x 2 ) ( 1 + 1 + 1 + x 2 + z 2 + y 2 ) ( x + y + z + x z + y z + x y ) 2 H e n c e M a x i m u m v a l u e = 2 4 = 2 2 Applying\quad CS,\\ { (x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 }+{ z }^{ 2 }+{ y }^{ 2 }+{ x }^{ 2 })(1+1+1+{ x }^{ 2 }+z^{ 2 }+{ y }^{ 2 })\quad \geq \quad { (x+y+z+xz+yz+xy) }^{ 2 }\\ Hence\quad Maximum\quad value\quad =\quad \sqrt { 2*4 } =2\sqrt { 2 }

I am searching for some silly mistake.O_o

Mayank Chaturvedi - 5 years, 3 months ago

Log in to reply

The flaw here's the equality case. You see the equality holds at x = y = z = z x = x y = y z = 1 x=y=z=\frac{z}{x}=\frac{x}{y}=\frac{y}{z}=1 which contradict the given condition x 2 + y 2 + z 2 = 1 x^2+y^2+z^2=1

P C - 5 years, 3 months ago

Log in to reply

Thanks. I must have checked the condition when equality holds. Good problem and solution.

Mayank Chaturvedi - 5 years, 3 months ago

what is the min value

arko roychoudhury - 5 years, 2 months ago

the answer is 3.73

ehinon aikhuomogbe - 3 years, 11 months ago
Cantdo Math
Apr 11, 2020

Maximum of the value follows from,AM-QM inequality and from the fact that x 2 + y 2 + z 2 x y + y z + z x x^2+y^2+z^2 \ge xy+yz+zx . For the minimum we see that, the expression equals s 2 2 + s 1 \frac{s^2}{2}+s-1 where s=a+b+c.so,minimizing s would minimize the expression. Since, x , y , z [ 0 , 1 ] x,y,z \in [0,1] from the constraint.x+y+z \ge x^2+y^2+z^2=1.Hence ,the minimum is 1/2+1-1/2=1.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...