Max and min part 4

Algebra Level 5

a 2 + b 2 + c 2 + a b + b c + a c \large a^2+b^2+c^2+ab+bc+ac If 0 a , b , c 4 0\leq a,b,c\leq 4 and a + b + c = 9 a+b+c=9 , find the sum of the maximum and the minimum value of the expression above


The answer is 111.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P C
Mar 14, 2016

Call the expression P, we see that P = ( a + b + c ) 2 ( a b + b c + a c ) = 81 ( a b + b c + a c ) P=(a+b+c)^2-(ab+bc+ac)=81-(ab+bc+ac) We can prove that a b + b c + a c ( a + b + c ) 2 3 = 27 P 54 ab+bc+ac\leq \frac{(a+b+c)^2}{3}=27 \therefore P\geq 54 , the equality holds when a = b = c = 3 a=b=c=3

Now we assume that a b c 0 a\geq b\geq c\geq 0 we have f ( a , a , c ) = 3 a 2 + c 2 + 2 a c f(a,a,c)=3a^2+c^2+2ac P f ( a , a , c ) = a 2 + b 2 + c 2 + a b + b c + a c 3 a 2 c 2 2 a c P-f(a,a,c)=a^2+b^2+c^2+ab+bc+ac-3a^2-c^2-2ac = 2 a 2 + b 2 + a b + b c a c = ( b a ) ( b + a ) + a ( b a ) + c ( b a ) 0 = -2a^2+b^2+ab+bc-ac=(b-a)(b+a)+a(b-a)+c(b-a)\leq 0 P f ( a , a , c ) \Rightarrow P\leq f(a,a,c) Now we have f ( a , a , c ) = 3 a 2 + c 2 + 2 a c f(a,a,c)=3a^2+c^2+2ac and 2 a + c = 9 2a+c=9 . Since a , c [ 0 ; 4 ] a,c\in[0;4] and a c a\geq c , we have a 3 a\geq 3 and c 3 c\leq 3

Subtituting c = 9 2 a c=9-2a into f ( a , a , c ) f(a,a,c) , we get f ( a , a , c ) = f ( a ) = 3 a 2 + ( 9 2 a ) 2 + 2 a ( 9 2 a ) = 3 a 2 18 a + 81 f(a,a,c)=f(a)=3a^2+(9-2a)^2+2a(9-2a)=3a^2-18a+81 We see that f ( a , a , c ) f(a,a,c) increases in [ 3 ; 4 ] [3;4] so f ( a , a , c ) f ( 4 ) = 57 f(a,a,c)\leq f(4)=57 The equality holds when ( a , b , c ) = ( 4 , 4 , 1 ) (a,b,c)=(4,4,1) and its permutations

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...