Find the maximum and minimum values of x + y + z given the following system of equations x + 2 y + 3 z y z + z x + x y = = 1 − 1
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Hang on, on your second line, the terms of yz should ad up to -4yz and not cancel out. What's the deal with that?
why not use vectors ? like x+2y+3z=(xi+yj+zk).(i+2j+3k) let xi+yj+zk be some P =modP * root14 cos(angle) 1<= modP root14 x^2 +y^2+z^2 >= 1/14 (x+y+z)^2 -2(xy+yz+xz) >= 1/14 x+y+z >=1/14 - 2 ! what's wrong ?
Problem Loading...
Note Loading...
Set Loading...
y z + ( 1 − 2 y − 3 z ) ( y + z ) + 1 = 0 y z + y − 2 y 2 − 3 y z + z + 2 y z − 3 z 2 + 1 = 0 1 − 2 y 2 + z − 3 z 2 + 1 = 0 − 2 y 2 + y + z − 3 z 2 + 1 = 0 δ = 1 + 8 ∗ ( z − 3 z 2 + 1 ) y = − 4 1 + 8 ∗ ( z − 3 z 2 + 1 ) − 1 ) So We have: x + y + z = 1 − y − 2 z = 1 − − 4 1 + 8 ∗ ( z − 3 z 2 + 1 ) − 1 ) − 2 z With z in the range: [-0.46 .. 0.81] to get the maximum and minimum of x+y+z. x + y + z M A X = 4 3 + 3 ∗ 3