Max and Min

Calculus Level 4

Find the maximum and minimum values of x + y + z x+y+z given the following system of equations x + 2 y + 3 z = 1 y z + z x + x y = 1 \begin{aligned} x+2y+3z&=&1 \\ yz+zx+xy&=&-1 \\ \end{aligned}

Max : 3 + 2 4 \frac {3 + \sqrt { 2 } }{ 4 } Min : 3 2 4 \frac { 3 - \sqrt { 2 } }{ 4 } Max : 3 + 3 3 2 \frac {3 + 3\sqrt { 3 } }{ 2 } Min : 3 3 3 2 \frac { 3 - 3\sqrt { 3 } }{ 2 } Max : 3 + 3 3 4 \frac { 3 + 3\sqrt { 3 } }{ 4 } Min : 3 3 3 4 \frac { 3 - 3\sqrt { 3 } }{ 4 } Max : 1 + 3 4 \frac {1 + \sqrt { 3 } }{ 4 } Min : 1 3 4 \frac { 1 - \sqrt { 3 } }{ 4 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nguyen Thanh Long
Dec 31, 2014

y z + ( 1 2 y 3 z ) ( y + z ) + 1 = 0 yz+(1-2y-3z)(y+z)+1=0 y z + y 2 y 2 3 y z + z + 2 y z 3 z 2 + 1 = 0 yz+y-2y^2-3yz+z+2yz-3z^2+1=0 1 2 y 2 + z 3 z 2 + 1 = 0 1-2y^2+z-3z^2+1=0 2 y 2 + y + z 3 z 2 + 1 = 0 -2y^2+y+z-3z^2+1=0 δ = 1 + 8 ( z 3 z 2 + 1 ) \delta=1+8*(z-3z^2+1) y = 1 + 8 ( z 3 z 2 + 1 ) 1 ) 4 y=\frac{\sqrt{1+8*(z-3z^2+1)}-1)}{-4} So We have: x + y + z = 1 y 2 z = 1 1 + 8 ( z 3 z 2 + 1 ) 1 ) 4 2 z x+y+z=1-y-2z=1-\frac{\sqrt{1+8*(z-3z^2+1)}-1)}{-4}-2z With z in the range: [-0.46 .. 0.81] to get the maximum and minimum of x+y+z. x + y + z M A X = 3 + 3 3 4 x+y+z_{MAX}=\boxed{\frac{3+3*\sqrt{3}}{4}}

Hang on, on your second line, the terms of yz should ad up to -4yz and not cancel out. What's the deal with that?

Josh Banister - 6 years, 5 months ago

why not use vectors ? like x+2y+3z=(xi+yj+zk).(i+2j+3k) let xi+yj+zk be some P =modP * root14 cos(angle) 1<= modP root14 x^2 +y^2+z^2 >= 1/14 (x+y+z)^2 -2(xy+yz+xz) >= 1/14 x+y+z >=1/14 - 2 ! what's wrong ?

Vineeth O'Connor - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...