Max - Min

Algebra Level 3

Suppose α and β are different real roots of the equation 4 x 2 4 p x 1 = 0 4x^{2} -4px-1=0 (p ε R).

[ α , β ] [α,β] is the domain of the function f ( x ) = 2 x p x 2 + 1 . f(x) = \frac{2x-p}{x^{2} +1} .

If g ( p ) = m a x ( f ( x ) ) m i n ( f ( x ) ) g(p) = max (f(x)) - min(f(x))

If g ( 2 2 ) = a b g(2\sqrt2) = \frac{a}{b} , where a a and b b are coprime positive integers, find a 3 + b 3 a^{3}+b^{3} .


The answer is 180529.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zico Quintina
May 11, 2018

Using quadratic formula and p = 2 2 \ p = 2\sqrt{2}\ we get

x = 4 p ± 16 p 2 + 16 8 = p ± p 2 + 1 2 = 2 2 ± 3 2 \begin{aligned} x &= \dfrac{4p \pm \sqrt{16p^2+16}}{8} \\ &= \dfrac{p \pm \sqrt{p^2 + 1}}{2} \\ &= \dfrac{2\sqrt{2} \pm 3}{2} \end{aligned} so α = 2 2 3 2 0.0858 β = 2 2 + 3 2 2.9142 \alpha = \dfrac{2\sqrt{2} - 3}{2} \approx 0.0858 \qquad \beta = \dfrac{2\sqrt{2} + 3}{2} \approx 2.9142 \\ \\

We derive f ( x ) \ f(x) \ to find its critical values:

f ( x ) = ( x 2 + 1 ) ( 2 ) ( 2 x p ) ( 2 x ) ( x 2 + 1 ) 2 = 0 2 x 2 + 2 4 x 2 + 2 x p = 0 2 x 2 x p 1 = 0 x = p ± p 2 + 4 2 = 2 2 ± 12 2 = 2 ± 3 \begin{aligned} f'(x) = \dfrac{(x^2 + 1)(2) - (2x - p)(2x)}{(x^2 + 1)^2} &= 0 \\ 2x^2 + 2 - 4x^2 + 2xp &= 0 \\ 2x^2 - xp - 1 &= 0 \\ \\ x = \dfrac{p \pm \sqrt{p^2 + 4}}{2} = \dfrac{2\sqrt{2} \pm \sqrt{12}}{2} &= \sqrt{2} \pm \sqrt{3} \end{aligned}

However, 2 + 3 3.1463 \ \sqrt{2} + \sqrt{3} \approx 3.1463 \ and 2 3 - 0.3178 \ \sqrt{2} - \sqrt{3} \approx \text{-}0.3178 , so neither is in our domain [ α , β ] [\alpha, \beta] , and our extrema will occur at the boundaries of our domain.

We compute

f ( 2 2 + 3 2 ) = 4 7 + 4 2 = 4 ( 7 4 2 ) 17 and f ( 2 2 3 2 ) = - 4 7 4 2 = - 4 ( 7 + 4 2 ) 17 f\left(\dfrac{2\sqrt{2} + 3}{2}\right) = \dfrac{4}{7 + 4\sqrt{2}} = \dfrac{4(7 - 4\sqrt{2})}{17} \qquad \text{and} \qquad f\left(\dfrac{2\sqrt{2} - 3}{2}\right) = \dfrac{\text{-}4}{7 - 4\sqrt{2}} = \dfrac{\text{-}4(7 + 4\sqrt{2})}{17}

so

g ( 2 2 ) = 4 ( 7 4 2 ) 17 - 4 ( 7 + 4 2 ) 17 = 56 17 a 3 + b 3 = 5 6 3 + 1 7 3 = 180529 g(2\sqrt{2}) = \dfrac{4(7 - 4\sqrt{2})}{17} - \dfrac{\text{-}4(7 + 4\sqrt{2})}{17} = \dfrac{56}{17} \implies a^3 + b^3 = 56^3 + 17^3 = \boxed{180529}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...