Find the maximum of the function f ( x ) = 2 sin 2 x + 2 cos 4 x .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The given function is 2 + 2 ( sin 4 x − sin 2 x ) . Since ∣ sin x ∣ ≤ 1 , sin 4 x − sin 2 x ≤ 0 for all x . So, the required maximum is 2 + 0 = 2
Problem Loading...
Note Loading...
Set Loading...
f ( x ) = 2 sin 2 x + 2 cos 4 x = 2 sin 2 x + 2 ( 1 − sin 2 x ) 2 = 2 sin 2 x + 2 − 4 sin 2 x + 2 sin 4 x = 2 ( sin 4 x − sin 2 x + 1 ) = 2 ( sin 2 x − 2 1 ) 2 + 2 3
⟹ max ( f ( x ) ) = 2 ( max ( sin 2 x ) − 2 1 ) 2 + 2 3 = 2 ( 1 − 2 1 ) 2 + 2 3 = 2 1 + 2 3 = 2