max ( f ( x ) ) \max (f(x))

Calculus Level 2

Find the maximum of the function f ( x ) = 2 sin 2 x + 2 cos 4 x f(x)=2\sin^2x+2\cos^4x .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 29, 2019

f ( x ) = 2 sin 2 x + 2 cos 4 x = 2 sin 2 x + 2 ( 1 sin 2 x ) 2 = 2 sin 2 x + 2 4 sin 2 x + 2 sin 4 x = 2 ( sin 4 x sin 2 x + 1 ) = 2 ( sin 2 x 1 2 ) 2 + 3 2 \begin{aligned} f(x) & = 2\sin^2 x + 2\cos^4 x \\ & = 2\sin^2 x + 2(1-\sin^2 x)^2 \\ & = 2\sin^2 x + 2-4\sin^2 x + 2\sin^4 x \\ & = 2(\sin^4 x - \sin^2 x +1) \\ & = 2\left(\sin^2 x - \frac 12\right)^2 + \frac 32 \end{aligned}

max ( f ( x ) ) = 2 ( max ( sin 2 x ) 1 2 ) 2 + 3 2 = 2 ( 1 1 2 ) 2 + 3 2 = 1 2 + 3 2 = 2 \begin{aligned} \implies \max (f(x)) & = 2\left(\max(\sin^2 x) - \frac 12\right)^2 + \frac 32 \\ & = 2\left(1 - \frac 12\right)^2 + \frac 32 = \frac 12 + \frac 32 = \boxed 2 \end{aligned}

The given function is 2 + 2 ( sin 4 x sin 2 x ) 2+2(\sin^4 x-\sin^2 x) . Since sin x 1 |\sin x|\leq 1 , sin 4 x sin 2 x 0 \sin^4 x-\sin^2 x\leq 0 for all x x . So, the required maximum is 2 + 0 = 2 2+0=\boxed 2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...