Max. value

Algebra Level 4

2 ( a x ) [ x + x 2 + b 2 ] 2(a-x) \left [ x + \sqrt{ x^2 + b^2 } \right ]

If x x is real, then state the maximum value of the expression above in terms of a a and b b .

For more fantastic problems, click here

a b \frac {a}{b} a 2 + b 2 { a }^{ 2 }+{ b }^{ 2 } a b ab a 2 { a }^{ 2 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Utkarsh Bansal
Feb 24, 2015

L e t t = x + x 2 + b 2 1 t = 1 x + x 2 + b 2 = x 2 + b 2 x b 2 t b 2 t = 2 x a n d t + b 2 t = 2 x 2 + b 2 T h u s 2 ( a x ) [ x + x 2 + b 2 ] = [ 2 a t + b 2 t ] . ( t ) = 2 a t t 2 + b 2 = a 2 + b 2 ( a 2 2 a t + t 2 ) = a 2 + b 2 ( a t ) 2 T h e r e f o r e y = 2 ( a x ) [ x + x 2 + b 2 ] a 2 + b 2 h e n c e m a x . v a l u e o f y i s a 2 + b 2 Let\quad t=x+\sqrt { { x }^{ 2 }+{ b }^{ 2 } } \\ \Rightarrow \frac { 1 }{ t } =\frac { 1 }{ x+\sqrt { { x }^{ 2 }+{ b }^{ 2 } } } =\frac { \sqrt { { x }^{ 2 }+{ b }^{ 2 } } -x }{ { b }^{ 2 } } \\ \therefore \quad t-\frac { { b }^{ 2 } }{ t } =2x\quad and\quad t+\frac { { b }^{ 2 } }{ t } =2\sqrt { { x }^{ 2 }+{ b }^{ 2 } } \\ Thus\quad 2\left( a-x \right) \left[ x+\sqrt { { x }^{ 2 }+{ b }^{ 2 } } \right] =\left[ 2a-t+\frac { { b }^{ 2 } }{ t } \right] .\left( t \right) \\ =2at-{ t }^{ 2 }+{ b }^{ 2 }={ a }^{ 2 }+{ b }^{ 2 }-\left( { a }^{ 2 }-2at+{ t }^{ 2 } \right) \\ ={ a }^{ 2 }+{ b }^{ 2 }-{ \left( a-t \right) }^{ 2 }\\ Therefore\quad y=2\left( a-x \right) \left[ x+\sqrt { { x }^{ 2 }+{ b }^{ 2 } } \right] \le { a }^{ 2 }+{ b }^{ 2 }\\ hence\quad max.\quad value\quad of\quad y\quad is\quad \boxed { { a }^{ 2 }+{ b }^{ 2 } }

theres a mistake. 't' is not equal to (b^2/t). please check carefully. (3rd line)

Chirag Singapore - 6 years, 3 months ago

Log in to reply

thanks for pointing out the mistake.I've corrected it.

Utkarsh Bansal - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...