Real numbers a , b , c , and d satisfy the system of equations ⎩ ⎪ ⎨ ⎪ ⎧ a + b c + d a c + b d = 4 = 4 = 2 . Find the maximum value of a b + c d .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Brief solution:
a b + c d = 4 ( a + b − c − d ) 2 − ( a − b + c − d ) 2 + 4 ( a c + b d ) ≤ 4 ( a + b − c − d ) 2 + 4 ( a c + b d ) = 2 .
Equity holds when ( a , b , c , d ) = ( 2 − 3 , 2 + 3 , 2 + 3 , 2 − 3 ) or ( 2 + 3 , 2 − 3 , 2 − 3 , 2 + 3 ) .
Hence, the maximum value is 2.
Problem Loading...
Note Loading...
Set Loading...
⎩ ⎪ ⎨ ⎪ ⎧ a + b = 4 c + d = 4 a c + b d = 2 ⟹ b = 4 − a ⟹ c = 4 − d ⟹ a ( 4 − d ) + ( 4 − a ) d = 2 ⟹ 4 ( a + d ) = 2 + 2 a d
Now we have:
a b + c d ⟹ max ( a b + c d ) = a ( 4 − a ) + ( 4 − d ) d = 4 ( a + d ) − a 2 − d 2 = 2 + 2 a d − ( a 2 + d 2 ) = 2 − ( a − d ) 2 = 2 when a = d = 2 ± 3 (see note)
Note that when a = d , then
4 ( a + d ) 4 a a 2 − 4 a + 1 ⟹ a = 2 + 2 a d = 1 + a 2 = 0 = 2 ± 3