Max#5

Algebra Level 3

Real numbers a , b , c , a,b,c, and d d satisfy the system of equations { a + b = 4 c + d = 4 a c + b d = 2. \begin{cases}\begin{aligned} a+b&=4 \\ c+d&=4 \\ ac+bd&=2.\end{aligned} \end{cases} Find the maximum value of a b + c d . ab+cd.


The answer is 2.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

{ a + b = 4 b = 4 a c + d = 4 c = 4 d a c + b d = 2 a ( 4 d ) + ( 4 a ) d = 2 4 ( a + d ) = 2 + 2 a d \begin{cases} a + b = 4 & \implies b = 4-a \\ c + d = 4 & \implies c = 4-d \\ ac+bd = 2 & \implies a(4-d) + (4-a)d = 2 & \implies \color{#3D99F6} 4(a+d) = 2 + 2ad \end{cases}

Now we have:

a b + c d = a ( 4 a ) + ( 4 d ) d = 4 ( a + d ) a 2 d 2 = 2 + 2 a d ( a 2 + d 2 ) = 2 ( a d ) 2 max ( a b + c d ) = 2 when a = d = 2 ± 3 (see note) \begin{aligned} ab + cd & = a(4-a) + (4-d)d \\ & = {\color{#3D99F6}4(a+d)} - a^2 - d^2 \\ & = {\color{#3D99F6}2 + 2ad} - (a^2 + d^2) \\ & = 2 - (a-d)^2 \\ \implies \max(ab+cd) & = \boxed{2} & \small \color{#3D99F6} \text{when }a=d=2\pm \sqrt 3 \text{ (see note)} \end{aligned}


Note that when a = d a=d , then

4 ( a + d ) = 2 + 2 a d 4 a = 1 + a 2 a 2 4 a + 1 = 0 a = 2 ± 3 \begin{aligned} 4(a+d) & = 2+2ad \\ 4a & = 1 + a^2 \\ a^2 - 4a + 1 & = 0 \\ \implies a & = 2 \pm \sqrt 3 \end{aligned}

Linkin Duck
Feb 1, 2018

Brief solution:

a b + c d = ( a + b c d ) 2 ( a b + c d ) 2 + 4 ( a c + b d ) 4 ( a + b c d ) 2 + 4 ( a c + b d ) 4 = 2. ab+cd=\frac { { \left( a+b-c-d \right) }^{ 2 }-{ \left( a-b+c-d \right) }^{ 2 }+4\left( ac+bd \right) }{ 4 } \le \frac { { \left( a+b-c-d \right) }^{ 2 }+4\left( ac+bd \right) }{ 4 } =2.

Equity holds when ( a , b , c , d ) = ( 2 3 , 2 + 3 , 2 + 3 , 2 3 ) (a,b,c,d)=(2-\sqrt{3},2+\sqrt{3},2+\sqrt{3},2-\sqrt{3}) or ( 2 + 3 , 2 3 , 2 3 , 2 + 3 ) (2+\sqrt{3},2-\sqrt{3},2-\sqrt{3},2+\sqrt{3}) .

Hence, the maximum value is 2.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...