Maxi.......Mom

Calculus Level 3

f ( x ) = x 3 3 3 2 x 2 + 2 x + 5 \large f(x) = \frac{x^3}{3} - \frac32x^2 + 2x + 5

Find the local maximum value M M of the function above. Give your answer as 6 M 6M .


The answer is 35.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nikhil Raj
May 31, 2017

Here, f ( x ) = x 3 3 3 2 x 2 + 2 x + 5 S o , f ( x ) = x 2 3 x + 2 For finding maximum and minimum value, we need to find the points whose value is at extrema. For finding points, f ( x ) = 0 x 2 3 x + 2 = 0 ( x 2 ) ( x 1 ) = 0 x = 1 , 2 Now we will identify which point has maximum value, for that we will first find f ( x ) . S o , f ( x ) = 2 x 3 Putting x = 1 , 2 in f ( x ) , we have f ( 1 ) = 1 < 0....................... ( Since, value is negative so given function has maximum value at x = 1 ) N o w , f ( 2 ) = 1 > 0................... ( Since, value is positive so given function has minimum value at x = 2 ) We need to find the maximum value of f ( x ) , S o , Max. value = f ( 1 ) = 1 3 3 2 + 2 + 5 = 35 6 . A n s w e r = 35 6 6 = 35 f(x) = \dfrac{x^3}{3} - \dfrac32x^2 + 2x + 5 \\ So, f'(x) = x^2 - 3x + 2 \\ {\text{For finding maximum and minimum value, we need to find the points whose value is at extrema. For finding points, }} \\ f'(x) = 0 \implies x^2 - 3x + 2 = 0 \implies (x - 2)(x - 1) = 0 \implies x = 1,2 \\ {\text{Now we will identify which point has maximum value, for that we will first find }} f''(x). \\ So, f''(x) = 2x - 3 \\ {\text{Putting }} x = 1,2 {\text{ in }} f''(x), {\text{we have}} \\ f''(1) = -1 < 0 .......................({\text{Since, value is negative so given function has maximum value at }} x = 1) \\ Now, f''(2) = 1 >0 ...................({\text{Since, value is positive so given function has minimum value at }} x = 2) \\ {\text{We need to find the maximum value of }} f(x), \\ So, {\text{Max. value}} = f(1) = \dfrac{1}{3} - \dfrac{3}{2} + 2 + 5 = \dfrac{35}{6}. \\ \therefore Answer = \dfrac{35}{6} \cdot 6 = \color{#EC7300}{\boxed{35}}

It is the standard in Brilliant.org or perhaps the standard way of using LaTex that not to include text in LaTex. You should notice that it is difficult to do so and many don't find it more presentable. The Brilliant staff and moderators like me will be taking the trouble to revert them into normal text. Just enter formulas in LaTex.

Chew-Seong Cheong - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...