maxiii

Geometry Level 3

Whats the maximum value of

( 5 sin x 12 cos x ) ( 5 cos x + 12 sin x ) (5\sin x -12\cos x )(5\cos x +12\sin x)


The answer is 84.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pranjal Jain
Dec 25, 2014

Let cos θ = 5 13 \cos \theta=\dfrac{5}{13}

( 5 sin x 12 cos x ) ( 5 cos x + 12 sin x ) = 169 ( cos θ sin x sin θ cos x ) ( cos θ cos x + sin θ sin x ) = 169 sin ( x θ ) c o s ( x θ ) = 84.5 ( sin ( 2 x 2 θ ) ) (5\sin x-12\cos x)(5\cos x+12\sin x)\\=169(\cos\theta\sin x-\sin\theta\cos x)(\cos\theta\cos x+\sin\theta\sin x)\\=169\sin(x-\theta)cos(x-\theta)\\=84.5(\sin(2x-2\theta))

So maximum value is 84.5

K V Shenoy
Dec 25, 2014

( 5 sin x 12 cos x ) ( 5 cos x + 12 sin x ) (5\sin x - 12\cos x)(5\cos x + 12\sin x) = { 60 ( sin 2 x cos 2 x ) 119 sin x cos x } \{60(\sin^{2}x-\cos^{2}x)-119 \sin x \cos x\} = 60 cos 2 x 59.5 sin 2 x -60\cos 2x -59.5\sin 2x .

The maximum value of this expression is 6 0 2 + 59. 5 2 = 84.5 \sqrt{60^{2} + 59.5^{2}} = \boxed{84.5} _\square

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...