More Algebra

Algebra Level 3

Real numbers x x , y y , and z z are such that x 2 + y 2 + z 2 = 4 x^2+y^2+z^2=4 . What is the maximum value of

( x 1 ) 2 + ( y + 2 ) 2 + ( z 2 ) 2 ? (x-1)^2+(y+2)^2+(z-2)^2?

8 85 Not enough information. 25

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

x 2 + y 2 + z 2 = 4 x^{2} + y^{2} + z^{2} = 4 describes a sphere of radius 2 2 centred at the origin. ( x 1 ) 2 + ( y + 2 ) 2 + ( z 2 ) 2 = r 2 (x - 1)^{2} + (y + 2)^{2} + (z - 2)^{2} = r^{2} describes a sphere of radius r r centred at ( 1 , 2 , 2 ) (1, -2, 2) , so the maximum value of r r given that x 2 + y 2 + z 2 = 4 x^{2} + y^{2} + z^{2} = 4 will be the greatest distance from ( 1 , 2 , 2 ) (1, -2, 2) to a point on the radius 2 2 sphere. Since ( 1 , 2 , 2 ) (1, -2, 2) is a distance of 1 2 + ( 2 ) 2 + 2 2 = 3 \sqrt{1^{2} + (-2)^{2} + 2^{2}} = 3 from the origin, the greatest distance, and hence greatest value for r r , will be 3 3 plus the radius of the given circle, i.e., 3 + 2 = 5 3 + 2 = 5 , giving a maximum for r 2 r^{2} of 25 \boxed{25} .

Thomas Spradling
Dec 27, 2019

First let us consider expanding the expression ( x 1 ) 2 + ( y + 2 ) 2 + ( z 2 ) 2 = x 2 + y 2 + z 2 2 x + 4 y 4 z + 9. (x-1)^2+(y+2)^2+(z-2)^2=x^2+y^2+z^2-2x+4y-4z+9. We then can substitute x 2 + y 2 + z 2 = 4 x^2+y^2+z^2=4 into this to get 2 x + 4 y 4 z + 13. -2x+4y-4z+13. We need to maxmize this, and one method of doing it is by using the Cauchy-Swartz inequality of the dot product. To do this, let us write the expression as the dot product of two vectors. We want the maximum, so it only makes since to make sure we are getting a positive dot product: 2 x + 4 y 4 z + 13 = [ 2 4 4 ] [ x y z ] + 13 -2x+4y-4z+13=\left| \left[ \begin{matrix} -2 \\ 4 \\ -4 \end{matrix} \right] \cdot \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] \right|+13 By the Cauchy-Swartz inequality: [ 2 4 4 ] [ x y z ] + 13 [ 2 4 4 ] [ x y z ] + 13 = ( 2 ) 2 + ( 4 ) 2 + ( 4 ) 2 4 + 13 \left| \left[ \begin{matrix} -2 \\ 4 \\ -4 \end{matrix} \right] \cdot \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] \right|+13\le \left| \left[ \begin{matrix} -2 \\ 4 \\ -4 \end{matrix} \right] \right| \left| \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] \right|+13=\sqrt{(-2)^2+(4)^2+(-4)^2}\cdot \sqrt{4}+13 = 25 =\boxed{25}

Assume a sphere of center (0,0,0) and radius 2 units. So, the question is saying the square of maximum distance from (1,2,-2) to the sphere.

The maximum distance will be radius + distance between (0,0,0) and (1,2,-2). By applying distance formula, it will be 2+3=5 units.

So, answer is 5^2=25 .

Observe the abrupt degradation of the difficulty level of this question by applying geometrical aptitude instead of algebra.

Pradeep Tripathi - 1 year, 5 months ago
Chew-Seong Cheong
Dec 28, 2019

Let f ( x , y , z ) f(x,y,z) be the expression. Then

f ( x , y , z ) = ( x 1 ) 2 + ( y + 2 ) 2 + ( z 2 ) 2 = x 2 2 x + 1 + y 2 + 4 y + 4 + z 2 4 z + 4 Since x 2 + y 2 + z 2 = 4 = 13 2 x + 4 y 4 z \begin{aligned} f(x,y,z) & = (x-1)^2 + (y+2)^2 + (z-2)^2 \\ & = \blue{x^2} - 2x + 1 + \blue{y^2} + 4y + 4 + \blue{z^2} - 4z + 4 & \small \blue{\text{Since }x^2+y^2+z^2 = 4} \\ & = 13 - 2x + 4y - 4z \end{aligned}

For maximum f ( x , y , z ) f(x,y,z) , 2 x > 0 -2x > 0 and 4 z > 0 -4z > 0 or x , z < 0 x, z < 0 . Let a = x a = - x , b = y b=y , and c = z c=-z . Then a 2 + b 2 + c 2 = x 2 + y 2 + z 2 = 4 a^2+b^2+c^2 = x^2+y^2+z^2 = 4 and f ( x , y , z ) f(x,y,z) = 13+2a+4b+4c). By Cauchy-Schwarz inequality

13 + 2 a + 4 b + 4 c 13 + ( 2 2 + 4 2 + 4 2 ) ( a 2 + b 2 + c 2 ) = 13 + ( 36 ) ( 4 ) = 13 + 12 = 25 \begin{aligned} 13+2a+4b+4c \le 13+\sqrt{(2^2+4^2+4^2)(a^2+b^2+c^2)} = 13 + \sqrt{(36)(4)} = 13+12 = \boxed{25} \end{aligned}

Equality occurs when a = 2 3 , b = 4 3 , c = 4 3 a=\frac 23, b = \frac 43, c = \frac 43 or x = 2 3 , y = 4 3 , z = 4 3 x=-\frac 23, y = \frac 43, z = - \frac 43 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...