Maxima and Minima

Calculus Level pending

If the minimum distance of the point ( 1 , 2 , 0 ) (1,2,0) from the cone z 2 = x 2 + y 2 { z }^{ 2 }={ x }^{ 2 }+{ y }^{ 2 } is a b \sqrt \frac{a}{b} , where a a and b b are prime numbers, find a + b a+b .

7 11 9 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Sep 15, 2020

Let's focus on the upper-half cone ( z 0 z \ge 0 ) for the purpose of this minimization problem. Taking a point P ( x 0 , y 0 , x 0 2 + y 0 2 ) P(x_0, y_0, \sqrt{x_0^{2} + y_0^{2}}) on the cone's surface, let the distance from P P to ( 1 , 2 , 0 ) (1,2,0) be the function:

l ( x 0 , y 0 ) = ( x 0 1 ) 2 + ( y 0 2 ) 2 + ( x 0 2 + y 0 2 ) = 2 x 0 2 2 x 0 + 2 y 0 2 4 y 0 + 5 l(x_0,y_0) = \sqrt{(x_0-1)^2 + (y_0-2)^2 + (x_0^{2}+y_0^{2})} = \sqrt{2x_0^{2} - 2x_0 + 2y_0^{2} - 4y_0 + 5} (i).

Taking l ( x 0 , y 0 ) = 0 \nabla l(x_0,y_0) =0 yields:

l x 0 = 4 x 0 2 2 2 x 0 2 2 x 0 + 2 y 0 2 4 y 0 + 5 = 0 x 0 = 1 2 , \frac{\partial l}{\partial x_0} = \frac{4x_0-2}{2 \sqrt{2x_0^{2} - 2x_0 + 2y_0^{2} - 4y_0 + 5}} = 0 \Rightarrow x_0 = \frac{1}{2},

l y 0 = 4 y 0 4 2 2 x 0 2 2 x 0 + 2 y 0 2 4 y 0 + 5 = 0 y 0 = 1 \frac{\partial l}{\partial y_0} = \frac{4y_0-4}{2 \sqrt{2x_0^{2} - 2x_0 + 2y_0^{2} - 4y_0 + 5}} = 0 \Rightarrow y_0 = 1

Finally, calculating the Hessian matrix of l l at the critical point Q ( 1 2 , 1 ) Q(\frac{1}{2},1) yields:

L ( 1 2 , 1 ) = [ l x 0 x 0 l x 0 y 0 l y 0 x 0 l y 0 y 0 ] = [ 4 5 0 0 4 5 ] = 4 5 I 2 x 2 L(\frac{1}{2},1) = \begin{bmatrix} l_{x_{0}x_{0}} & l_{x_{0}y_{0}} \\ l_{y_{0}x_{0}} & l_{y_{0}y_{0}} \end{bmatrix} = \begin{bmatrix} \frac{4}{5} & 0 \\ 0 & \frac{4}{5} \end{bmatrix} = \frac{4}{5} \cdot I_{2x2}

which is positive-definite at Q Q . Hence, the minimum distance from P P to ( 1 , 2 , 0 ) (1,2,0) computes to l ( 1 2 , 1 ) = 5 2 . l(\frac{1}{2},1) = \boxed{\sqrt{\frac{5}{2}}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...