Maxima & Minima

Calculus Level 3

Given that f ( x , y ) = y 2 + 4 x y + 3 x 2 + x 3 f\left( x,y \right) ={ y }^{ 2 }+4xy+3{ x }^{ 2 }+{ x }^{ 3 } ; find the local minimum value of f ( x , y ) f\left( x,y \right) . Round-off to 3 decimal places.


The answer is -0.148.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Sep 15, 2020

Taking f ( x , y ) = 0 \nabla f(x,y) = 0 , we obtain:

f x = 4 y + 6 x + 3 x 2 = 0 f_{x} = 4y + 6x +3x^2=0 (i)

f y = 2 y + 4 x = 0 f_{y} = 2y + 4x = 0 (ii).

Knowing that y = 2 x y = -2x from (ii), substituting this value into (i) produces the quadratic 3 x 2 2 x = 0 x = 0 , 2 3 3x^2 - 2x = 0 \Rightarrow x = 0, \frac{2}{3} . This gives us two critical points to consider: ( x , y ) = ( 0 , 0 ) ; ( 2 3 , 4 3 ) . x,y) = (0,0); (\frac{2}{3}, -\frac{4}{3}). The Hessian matrix of f f calculates to:

F ( x , y ) = [ 6 + 6 x 4 4 2 ] F(x,y) = \begin{bmatrix} 6 + 6x & 4 \\ 4 & 2 \end{bmatrix} (iii)

and plugging in the two above critical points yields:

F ( 0 , 0 ) = [ 6 4 4 2 ] F(0,0) = \begin{bmatrix} 6 & 4 \\ 4 & 2 \end{bmatrix} \Rightarrow indefinite matrix (aka saddle point),

F ( 2 3 , 4 3 ) = [ 10 4 4 2 ] F(\frac{2}{3},-\frac{4}{3}) = \begin{bmatrix} 10 & 4 \\ 4 & 2 \end{bmatrix} \Rightarrow positive-definite matrix (aka global minimum point).

Hence, the minimum of f f computes to f ( 2 3 , 4 3 ) = 4 27 . f(\frac{2}{3},-\frac{4}{3}) = \boxed{-\frac{4}{27}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...