Maximization problem

Algebra Level 4

If x 2 + y 2 + z 2 = 36 x^2 + y^2 + z^2 = 36 , what the maximum value of x y + 2 y z xy + 2 yz ?


The answer is 40.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I can't solve it by Algebra but by Calculus using Lagrange multipliers and defining F ( x , y , z , λ ) = x y + 2 y z λ ( x 2 + y 2 + z 2 36 ) F(x,y,z,\lambda) = xy+2yz - \lambda(x^2+y^2+z^2 - 36) . Then taking partial derivatives and equating them to zero.

F x = y 2 λ x y x = 2 λ F y = x + 2 z 2 λ y x + 2 z y = 2 λ F z = 2 y 2 λ z 2 y z = 2 λ F λ = x 2 y 2 z 2 + 36 x 2 + y 2 + z 2 = 36 \begin{array} {ll} \dfrac {\partial F}{\partial x} = y - 2\lambda x & \implies \dfrac yx = 2 \lambda \\ \dfrac {\partial F}{\partial y} = x+2z - 2\lambda y & \implies \dfrac {x+2z}y = 2 \lambda \\ \dfrac {\partial F}{\partial z} = 2y - 2\lambda z & \implies \dfrac {2y}z = 2 \lambda \\ \dfrac {\partial F}{\partial \lambda} = - x^2 - y^2 - z^2 + 36 & \implies x^2+y^2+z^2 = 36 \end{array}

2 λ = y x = x + 2 z y = 2 y z \implies 2 \lambda = \dfrac yx = \dfrac {x+2z}y = \dfrac {2y}z . From y x = 2 y z z = 2 x \dfrac yx = \dfrac {2y}z \implies z = 2x .

From y x = x + 2 z y = 5 x y y 2 = 5 x 2 \dfrac yx = \dfrac {x+2z}y = \dfrac {5x}y \implies y^2 = 5x^2 . From x 2 + y 2 + z 2 = 36 x 2 + 5 x 2 + 4 x 2 = 36 x^2+y^2+z^2 = 36 \implies x^2 + 5x^2 + 4x^2 = 36

x = 6 10 \implies x = \dfrac 6{\sqrt {10}} , y = 3 2 y= 3\sqrt 2 , and z = 12 10 z = \dfrac {12}{\sqrt{10}} .

Therefore, max ( F ( x , y , z , 0 ) = F ( 6 10 , 3 2 , 12 10 , 0 ) = 6 10 3 2 + 2 3 2 12 10 = 18 5 40.2 \max (F(x,y,z,0) = F \left(\dfrac 6{\sqrt {10}}, 3\sqrt 2, \dfrac {12}{\sqrt{10}}, 0\right) = \dfrac 6{\sqrt {10}} \cdot 3\sqrt 2 + 2 \cdot 3\sqrt 2 \cdot \dfrac {12}{\sqrt{10}} = 18\sqrt 5 \approx \boxed{40.2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...