Maximization problem - version 3

Algebra Level 2

If x 2 4 + y 2 9 + z 2 25 = 1 \dfrac{x^2}{4} + \dfrac{y^2}{9} + \dfrac{z^2}{25} = 1 , what is the maximum of 5 x + 3 y + 4 z ? 5 x + 3 y + 4 z ?

Hint: You can use Cauchy-Schwarz inequality here.


The answer is 24.10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Using Cauchy-Schwarz inequality as suggested. Rewrite 5 x + 3 y + 4 z 5x+3y+4z as follows and square it:

( 10 × x 2 + 9 × y 3 + 20 × z 5 ) 2 ( 1 0 2 + 9 2 + 2 0 2 ) ( x 2 4 + y 2 9 + z 2 25 ) = 581 ( 1 ) 5 x + 3 y + 4 z 581 24.1 \begin{aligned} \left(10 \times \frac x2 + 9 \times \frac y3 + 20 \times \frac z5 \right)^2 & \le \left(10^2 + 9^2 + 20^2\right) \left(\frac {x^2}4 + \frac {y^2}9 + \frac {z^2}{25} \right) = 581(1) \\ \implies 5x + 3y + 4z & \le \sqrt{581} \approx \boxed{24.1} \end{aligned}

Equality occurs when x 20 = y 27 = z 100 = 1 581 \dfrac x{20} = \dfrac y{27} = \dfrac z{100} = \dfrac 1{\sqrt{581}} .

Let x = 2 cos α cos β , y = 3 cos α sin β , z = 5 sin α x=2\cos α\cos β,y=3\cos α\sin β,z=5\sin α

Then 5 x + 3 y + 4 z = 10 cos α cos β + 9 cos α sin β + 20 sin α 181 cos α + 20 sin α 581 5x+3y+4z=10\cos α\cos β+9\cos α\sin β+20\sin α\leq \sqrt {181}\cos α+20\sin α\leq \sqrt {581}

Therefore the maximum of 5 x + 3 y + 4 z 5x+3y+4z is 581 24.1039 \sqrt {581}\approx \boxed {24.1039} .

The maximum is attained when

sin ( α + tan 1 181 20 ) = 1 \sin \left (α+\tan^{-1} \frac{\sqrt {181}}{20}\right ) =1

sin α = 20 581 \implies \sin α=\dfrac {20}{\sqrt {581}}

cos α = 181 581 \cos α=\sqrt {\dfrac {181}{581}}

sin ( β + tan 1 10 9 ) = 1 \sin \left (β+\tan^{-1} \frac {10}{9}\right ) =1

sin β = 9 181 \implies \sin β=\dfrac {9}{\sqrt {181}}

cos β = 10 181 \cos β=\dfrac {10}{\sqrt {181}}

Substituting values we get

x = 20 581 0.8297 x=\dfrac {20}{\sqrt {581}}\approx 0.8297

y = 27 581 1.1201 y=\dfrac {27}{\sqrt {581}}\approx 1.1201

z = 100 581 4.1487 z=\dfrac {100}{\sqrt {581}}\approx 4.1487 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...