Find the maximum value of
2 5 6 sin 2 ( x ) + 2 2 5 cos 2 ( x ) 7 4 4 0 sin ( x ) cos ( x ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Note first that
( 1 6 sin ( x ) − 1 5 cos ( x ) ) 2 = 2 5 6 sin 2 ( x ) + 2 2 5 cos 2 ( x ) − 4 8 0 sin ( x ) cos ( x )
⟹ 7 4 4 0 sin ( x ) cos ( x ) = 2 3 1 ∗ 4 8 0 sin ( x ) cos ( x ) =
2 3 1 ( ( 2 5 6 sin 2 ( x ) + 2 2 5 cos 2 ( x ) ) − ( 1 6 sin ( x ) − 1 5 cos ( x ) ) 2 ) .
Thus we can write the given expression as
2 3 1 − 2 5 6 sin 2 ( x ) + 2 2 5 cos 2 ( x ) ( 1 6 sin ( x ) − 1 5 cos ( x ) ) 2 = 2 3 1 − A ( x ) .
Now since A ( x ) ≥ 0 our original expression will achieve a maximum when A ( x ) = 0 , which is the case when
1 6 sin ( x ) = 1 5 cos ( x ) ⟹ tan ( x ) = 1 6 1 5 ⟹ x = tan − 1 ( 1 6 1 5 ) ,
at which point the original expression achieves a maximum value of 2 3 1 = 1 5 . 5 .
Problem Loading...
Note Loading...
Set Loading...
Maximum value of the expression can be obtained when the value of the denominator is minimum. Applying AM-GM inequality, 2 5 6 sin 2 x + 2 2 5 cos 2 x ≥ 4 8 0 sin x cos x 2 5 6 sin 2 x + 2 2 5 cos 2 x 7 4 4 0 sin x cos x ≤ 4 8 0 7 4 4 0 ≤ 1 5 . 5