Calculus is not needed

Geometry Level 3

Find the maximum value of

7440 sin ( x ) cos ( x ) 256 sin 2 ( x ) + 225 cos 2 ( x ) . \frac { 7440 \sin(x) \cos (x) }{ 256{ \sin^2(x) }+225{ \cos^2(x) } }.


The answer is 15.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rohit Ner
Sep 3, 2015

Maximum value of the expression can be obtained when the value of the denominator is minimum. Applying AM-GM inequality, 256 sin 2 x + 225 cos 2 x 480 sin x cos x 7440 sin x cos x 256 sin 2 x + 225 cos 2 x 7440 480 15.5 256\sin^2 x+225\cos^2 x \geq480\sin x\cos x\\\large\frac{7440\sin x\cos x}{256\sin^2 x+225\cos^2 x}\leq\frac{7440}{480}\\\Huge\color{#3D99F6}{\leq\boxed{15.5}}

Note first that

( 16 sin ( x ) 15 cos ( x ) ) 2 = 256 sin 2 ( x ) + 225 cos 2 ( x ) 480 sin ( x ) cos ( x ) (16\sin(x) - 15\cos(x))^{2} = 256\sin^{2}(x) + 225\cos^{2}(x) - 480\sin(x)\cos(x)

7440 sin ( x ) cos ( x ) = 31 2 480 sin ( x ) cos ( x ) = \Longrightarrow 7440\sin(x)\cos(x) = \dfrac{31}{2}*480\sin(x)\cos(x) =

31 2 ( ( 256 sin 2 ( x ) + 225 cos 2 ( x ) ) ( 16 sin ( x ) 15 cos ( x ) ) 2 ) . \dfrac{31}{2}\left((256\sin^{2}(x) + 225\cos^{2}(x)) - (16\sin(x) - 15\cos(x))^{2}\right).

Thus we can write the given expression as

31 2 ( 16 sin ( x ) 15 cos ( x ) ) 2 256 sin 2 ( x ) + 225 cos 2 ( x ) = 31 2 A ( x ) . \dfrac{31}{2} - \dfrac{(16\sin(x) - 15\cos(x))^{2}}{256\sin^{2}(x) + 225\cos^{2}(x)} = \dfrac{31}{2} - A(x).

Now since A ( x ) 0 A(x) \ge 0 our original expression will achieve a maximum when A ( x ) = 0 , A(x) = 0, which is the case when

16 sin ( x ) = 15 cos ( x ) tan ( x ) = 15 16 x = tan 1 ( 15 16 ) , 16\sin(x) = 15\cos(x) \Longrightarrow \tan(x) = \frac{15}{16} \Longrightarrow x = \tan^{-1}(\frac{15}{16}),

at which point the original expression achieves a maximum value of 31 2 = 15.5 . \dfrac{31}{2} = \boxed{15.5}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...