Maximize complex numbers

Algebra Level 4

Determine the largest real number k \color{#3D99F6}{k} such that z 1 z 2 + z 2 z 3 + z 3 z 1 k z 1 + z 2 + z 3 \large | z_1z_2 + z_2z_3 + z_3z_1 | \geq \color{#3D99F6}{k} | z_1 + z_2 + z_3| for all complex numbers z 1 , z 2 , z 3 z_1 , z_2 , z_3 with unit absolute value.

6 None of these 2 1 7 5 4 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Oct 21, 2015

G i v e n z 1 = z 2 = z 3 = 1 W e k n o w , z z ˉ = z 2 z 1 z 2 + z 2 z 3 + z 3 z 1 2 k 2 z 1 + z 2 + z 3 2 3 + z 1 ˉ z 3 + z 1 z 3 ˉ + z 2 ˉ z 3 + z 2 z 3 ˉ + z 1 ˉ z 2 + z 1 z 2 ˉ k 2 ( 3 + z 1 ˉ z 3 + z 1 z 3 ˉ + z 2 ˉ z 3 + z 2 z 3 ˉ + z 1 ˉ z 2 + z 1 z 2 ˉ ) k 2 1 max ( k ) = 1 \large{Given\quad \left| { z }_{ 1 } \right| =\left| { z }_{ 2 } \right| =\left| { z }_{ 3 } \right| =1\\ We\quad know,\quad z\bar { z } ={ \left| z \right| }^{ 2 }\\ { \left| { z }_{ 1 }{ z }_{ 2 }+{ z }_{ 2 }{ z }_{ 3 }+{ z }_{ 3 }{ z }_{ 1 } \right| }^{ 2 }\ge { k }^{ 2 }{ \left| { z }_{ 1 }+{ z }_{ 2 }+{ z }_{ 3 } \right| }^{ 2 }\\ 3+\bar { { z }_{ 1 } } { z }_{ 3 }+{ z }_{ 1 }\bar { { z }_{ 3 } } +\bar { { z }_{ 2 } } { z }_{ 3 }+{ z }_{ 2 }\bar { { z }_{ 3 } } +\bar { { z }_{ 1 } } { z }_{ 2 }+{ z }_{ 1 }\bar { { z }_{ 2 } } \ge { k }^{ 2 }\left( 3+\bar { { z }_{ 1 } } { z }_{ 3 }+{ z }_{ 1 }\bar { { z }_{ 3 } } +\bar { { z }_{ 2 } } { z }_{ 3 }+{ z }_{ 2 }\bar { { z }_{ 3 } } +\bar { { z }_{ 1 } } { z }_{ 2 }+{ z }_{ 1 }\bar { { z }_{ 2 } } \right) \\ { k }^{ 2 }\le 1\\ \boxed { \max { \left( k \right) =1 } } }

Good use of property,

Akhil Bansal - 5 years, 7 months ago

I didn't understand your solution. Would you mind explaining it in more detail? This problem really interests me. For starters, how do you define z z ? If you take z 1 = z 2 = z 3 = 1 z_1=z_2=z_3=1 , then your equation says z z ˉ = 9 z 2 z\bar{z}=9|z|^2 . This would imply z = 0 z=0 . Hopefully, you can see how I am confused...

James Wilson - 5 months, 1 week ago

Log in to reply

I think I figured out that you are missing an equal sign there. However, I still only understand part of the solution. How do you arrive at k 2 1 k^2\leq 1 ?

James Wilson - 5 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...