Maximize it (2)

Algebra Level 3

The values of a , b , c , a, b, c, and d d are 1 , 2 , 3 , 1, 2, 3, and 4 , 4, but in no particular order. What is the largest possible value of a b + b c + c d + d a ? ab + bc + cd + da ?


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Akeel Howell
Mar 25, 2017

( a + b + c + d ) 2 = a 2 + b 2 + c 2 + d 2 + 2 ( a b + a c + a d + b c + b d + c d ) a b + b c + c d + d a = ( a + b + c + d ) 2 a 2 b 2 c 2 d 2 2 ( a c + b d ) (a+b+c+d)^2 = a^2+b^2+c^2+d^2+2(ab+ac+ad+bc+bd+cd) \\ \implies ab+bc+cd+da = \dfrac{(a+b+c+d)^2-a^2-b^2-c^2-d^2}{2}-(ac+bd) .

We can maximize a b + b c + c d + d a ab+bc+cd+da by minimizing a c + b d ac+bd . Checking the three distinct values of a c + b d ac+bd , which are

1 × 2 + 3 × 4 1 \times 2 + 3 \times 4 ,

1 × 3 + 2 × 4 1 \times 3 + 2 \times 4

and 1 × 4 + 2 × 3 1 \times 4 + 2 \times 3 ,

we see that the smallest one is 1 × 4 + 2 × 3 = 10 1 \times 4 + 2 \times 3 = 10 .

Thus, the largest possible value of a b + b c + c d + d a ab+bc+cd+da is ( 1 + 2 + 3 + 4 ) 2 1 2 2 2 3 2 4 2 2 10 = 25 \dfrac{(1+2+3+4)^2-1^2-2^2-3^2-4^2}{2}-10 = \space \boxed{25}

There's an 1-line solution.

Hint: a b + b c + c d + d a = ( a + c ) ( b + d ) ab + bc + cd + da = (a+c) ( b+d ) .

Calvin Lin Staff - 4 years, 2 months ago

a b + b c + c d + d a = ( a + c ) ( b + d ) ( a + c + b + d 2 ) 2 = 25 ab+bc+cd+da=(a+c)(b+d)\le\left(\dfrac{a+c+b+d}{2}\right)^2=25

Dexter Woo Teng Koon - 4 years, 2 months ago
Grant Bulaong
Apr 26, 2017

a b + b c + c d + d a = ( a + c ) ( b + d ) ab+bc+cd+da=(a+c)(b+d)

We know that the sum a + b + c + d = 10 a+b+c+d=10 . By AM-GM Inequality, ( a + c ) + ( b + d ) 2 ( a + c ) ( b + d ) \dfrac{(a+c)+(b+d)}{2} \geq \sqrt{(a+c)(b+d)} . Upon evaluating the inequality, we find that the maximum value of ( a + c ) ( b + d ) (a+c)(b+d) is 5 5 .

a b + a c + a d + b c + b d + c d ab + ac + ad + bc + bd + cd = 35 Our purpose is to minimize a c + b d ac + bd and it happen when a = 1 , b = 2 , c = 4 , d = 3 a=1,b=2,c=4,d=3

35 10 = 25 35-10=25

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...