Maximize It

Algebra Level 5

x y + y z + x z 2 x y z \large xy+yz+xz - 2xyz

If x , y x,y and z z are non-negative real numbers satisfying x + y + z = 1 x+y+z=1 , find the maximum value of the expression above.

Give your answer to 3 decimal places.

For more problems try my set


The answer is 0.259.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Denote the expression by P = x y + y z + z x 2 x y z \text{Denote the expression by P = }xy+yz+zx-2xyz

P + 2 = 1 + x + y + z + x y + y z + z x + x y z 3 x y z = ( 1 + x ) ( 1 + y ) ( 1 + z ) 3 x y z \begin{aligned}P+2=1+x+y+z+xy+yz+zx+xyz-3xyz = (1+x)(1+y)(1+z)-3xyz\end{aligned}

( 1 + x ) + ( 1 + y ) + ( 1 + z ) 3 ( ( 1 + x ) ( 1 + y ) ( 1 + z ) ) 1 3 \frac{(1+x)+(1+y)+(1+z)}{3}\ge ((1+x)(1+y)(1+z))^{\frac{1}{3}}

( 1 + x ) ( 1 + y ) ( 1 + z ) 64 27 (1+x)(1+y)(1+z)\le \frac{64}{27} , P 64 27 3 x y z 2 P\le \frac{64}{27}-3xyz-2 & we have x y z 1 27 xyz\le \frac{1}{27} , so P 64 27 3 27 2 = 7 27 = 0.259 (Approx.) P\le \frac{64}{27}-\frac{3}{27}-2=\frac{7}{27}=0.259\text{(Approx.)}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...