Maximize the given function f(x)

Calculus Level 3

f ( x ) = x 4 3 x 2 6 x + 13 x 4 x 2 + 1 \large f(x) = \sqrt{x^4-3x^2-6x+13} - \sqrt{x^4-x^2+1}

Function f ( x ) f(x) above is defined for all real x x . Find the maximum value of f ( x ) f(x) to 2 decimal places.


The answer is 3.16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ishan Singh
Mar 8, 2017

Given : f ( x ) = x 4 3 x 2 6 x + 13 x 4 x 2 + 1 f(x) = \sqrt{x^4-3x^2-6x+13} - \sqrt{x^4-x^2+1}

= ( x 2 2 ) 2 + ( x 3 ) 2 ( x 2 1 ) 2 + ( x 0 ) 2 =\sqrt{(x^2-2)^2+(x-3)^2} - \sqrt{(x^2-1)^2+(x-0)^2}

On the Cartesian Plane if P ( x , x 2 ) , A ( 3 , 2 ) , B ( 0 , 1 ) P(x,x^2) , A(3,2) , B(0,1)
are three points, then

y = P A P B A B = 10 y=|PA| - |PB| \le |AB|=\sqrt{10} (Using Triangle Inequality)

where the equality holds if P P , A A and B B lie on a line.

f max ( x ) = 10 \implies f_{\text{max}} (x) = \boxed{\sqrt{10}}

Very nice. Just to make it perfect, equality occurs when P , B , A P,B,A are collinear in that order. The values of x x for which P , A , B P,A,B are collinear are 1 6 ( 1 ± 37 ) \tfrac16(1 \pm\sqrt{37}) . Only the "minus" one of these has P P in the right place, since the "plus" one has P P between A A and B B .

Mark Hennings - 4 years, 3 months ago

Nice solution. Great idea.

Sudhamsh Suraj - 4 years, 3 months ago

Log in to reply

hey! r u the one who has sent me a facebook friend request( by name of sudhamsh ) ? i'll accept if it's u otherwise decline it.

A Former Brilliant Member - 4 years, 3 months ago

Did the same way! Nice problem!

Sumanth R Hegde - 4 years, 3 months ago
Mark Hennings
Mar 8, 2017

Since f ( x ) = 2 x 3 3 x 3 x 4 3 x 2 6 x + 13 2 x 3 x x 4 x 2 + 1 f'(x) \; = \; \frac{2x^3 - 3x - 3}{\sqrt{x^4 - 3x^2 - 6x + 13}} - \frac{2x^3-x}{\sqrt{x^4 - x^2 + 1}} we see that f ( x ) = 0 ( 2 x 3 3 x 3 ) x 4 x 2 + 1 = ( 2 x 3 x ) x 4 3 x 2 6 x + 1 ( 2 x 3 3 x 3 ) 2 ( x 4 x 2 + 1 ) = ( 2 x 3 x ) 2 ( x 4 3 x 2 6 x + 1 ) ( 3 x 2 x 3 ) ( 4 x 5 12 x 4 + 2 x 3 + 3 x 2 5 x 3 ) = 0 \begin{aligned} f'(x) = 0 & \Rightarrow \; (2x^3 - 3x - 3)\sqrt{x^4-x^2+1} \; = \; (2x^3 - x)\sqrt{x^4 - 3x^2 - 6x + 1} \\ & \Rightarrow \; (2x^3 - 3x - 3)^2(x^4 - x^2 + 1) \; = \; (2x^3 - x)^2(x^4 - 3x^2 - 6x + 1) \\ & \Rightarrow \; (3x^2 - x - 3)(4x^5 - 12x^4 + 2x^3 + 3x^2 - 5x - 3) \; = \; 0 \end{aligned} There are three real roots of this equation, namely a ± = 1 6 ( 1 ± 37 ) a_\pm = \tfrac16(1 \pm \sqrt{37}) and b 2.79462 b \approx 2.79462 . Of these, while a + = 1 6 ( 1 + 37 ) a_+=\tfrac16(1 + \sqrt{37}) is a root of the order 7 7 polynomial equation, it is not a root of the unsquared version of that equation (since 2 a + 3 a + > 0 > 2 a + 3 3 a + 3 2a_+^3 - a_+ > 0 > 2a_+^3 - 3a_+ - 3 ), and so is not a zero of f ( x ) f'(x) . It is easy to check that a = 1 6 ( 1 37 ) a_- = \tfrac16(1-\sqrt{37}) is a maximum for f f , while b b is a minimum. Evaluating f f at 1 6 ( 1 37 ) \tfrac16(1-\sqrt{37}) gives the maximum value of 3.16 \boxed{3.16} to 2DP.


Alternatively, try this: ( 3 x 2 x 3 ) 2 0 10 x 4 10 x 2 + 10 x 4 + 6 x 3 + 7 x 2 6 x + 1 10 ( x 4 x 2 + 1 ) ( x 2 + 3 x 1 ) 2 10 x 4 x 2 + 1 1 3 x x 2 2 10 x 4 x 2 + 1 ( x 4 3 x 2 6 x + 13 ) ( x 4 x 2 + 1 ) 10 x 4 3 x 2 6 x + 13 ( x 4 x 2 + 1 + 10 ) 2 x 4 3 x 2 6 x + 13 x 4 x 2 + 1 + 10 f ( x ) 10 \begin{aligned} (3x^2 - x - 3)^2 & \ge \; 0 \\ 10x^4 - 10x^2 + 10 & \ge \; x^4 + 6x^3 + 7x^2 - 6x + 1 \\ 10(x^4 - x^2 + 1) & \ge \; (x^2 + 3x - 1)^2 \\ \sqrt{10}\sqrt{x^4 - x^2 + 1} & \ge \; 1 - 3x - x^2 \\ 2\sqrt{10}\sqrt{x^4 - x^2 + 1} & \ge \; (x^4 - 3x^2 - 6x + 13) - (x^4 - x^2 + 1) - 10 \\ x^4 - 3x^2 - 6x + 13 & \le \; \big(\sqrt{x^4 - x^2 + 1} + \sqrt{10}\big)^2 \\ \sqrt{x^4 - 3x^2 - 6x + 13} & \le \; \sqrt{x^4 - x^2 + 1} + \sqrt{10} \\ f(x) & \le \; \sqrt{10} \end{aligned} with equality precisely when 3 x 2 x 3 = 0 3x^2 - x -3 = 0 and x 2 + 3 x 1 < 0 x^2 + 3x - 1 < 0 , namely when x = 1 6 ( 1 37 ) x = \tfrac16(1 - \sqrt{37}) . It is also worth noting that x 4 3 x 2 6 x + 13 = ( x 2 2 ) 2 + ( x 3 ) 2 0 x^4 - 3x^2 - 6x + 13 = (x^2 - 2)^2 + (x - 3)^2 \ge 0 , and hence the square root can always be defined.

See also .

Ishan Singh - 4 years, 3 months ago

Log in to reply

Very elegant solution!

Mark Hennings - 4 years, 3 months ago

I am not able to change my name now. In brilliant account. If u know how to change plz tell me @shubham dhull @Mark Hennings

Sudhamsh Suraj - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...