Maximize the Integral

Calculus Level 4

Find the smallest value of a R + a \in \mathbb{R^+} such that the value of

π / 3 2 π / 3 sin ( x + a ) d x \displaystyle \large \int_{-\pi/3}^{2\pi/3} \sin (x+a) \, dx

will be maximum.

Submit your answer as the minimum value of 1000 a \lfloor 1000a \rfloor .


Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 1047.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 27, 2017

Similar solution with @Guilherme Niedu 's, slightly shorter.

I = π 3 2 π 3 sin ( x + a ) d x = cos ( x + a ) π 3 2 π 3 = cos ( 2 π 3 + a ) + cos ( π 3 + a ) Note that cos ( π x ) = cos x = cos ( π 3 a ) + cos ( π 3 a ) and that cos ( x ) = cos x = 2 cos ( π 3 a ) \begin{aligned} I & = \int_{-\frac \pi 3}^{\frac {2\pi}3} \sin (x+a) \ dx \\ & = - \cos (x+a) \bigg|_{-\frac \pi 3}^{\frac {2\pi}3} \\ & = {\color{#3D99F6}- \cos \left( -\frac {2\pi}3 + a\right)} +{\color{#D61F06} \cos \left(-\frac \pi 3 + a\right)} & \small \color{#3D99F6} \text{Note that }\cos(\pi -x) = - \cos x \\ & = {\color{#3D99F6} \cos \left(\frac \pi3 - a\right)} + {\color{#D61F06} \cos \left(\frac \pi3 - a\right)} & \small \color{#D61F06} \text{and that }\cos(-x) = \cos x \\ & = 2 \cos \left(\frac \pi3 - a\right) \end{aligned}

I I is maximum, when cos ( π 3 a ) = 1 \cos \left(\frac \pi3 - a\right) = 1 , its maximum, or a = π 3 a = \frac \pi 3 , the minimum value. 1000 a = 1047 \implies \lfloor 1000a \rfloor = \boxed{1047} .

Good one! (+1)

Guilherme Niedu - 4 years ago
Guilherme Niedu
May 26, 2017

I = π / 3 2 π / 3 sin ( x + a ) d x \large \displaystyle I = \int_{-\pi/3}^{2\pi/3} \sin(x+a)dx

I = cos ( x + a ) 2 π / 3 π / 3 \large \displaystyle I = \cos(x+a) \Bigg |_{2\pi/3}^{-\pi/3}

I = [ cos ( a ) cos ( π / 3 ) + sin ( a ) sin ( π / 3 ) ] [ cos ( a ) cos ( 2 π / 3 ) sin ( a ) sin ( 2 π / 3 ) ] \large \displaystyle I = [ \cos(a) \cos(\pi/3) + \sin(a) \sin(\pi/3) ] - [- \cos(a) \cos(2 \pi/3) - \sin(a) \sin(2 \pi/3)]

Since cos ( x ) = cos ( π x ) \cos(x) = -\cos(\pi - x) and sin ( x ) = sin ( π x ) \sin(x) = -\sin(\pi - x) :

I = [ cos ( a ) cos ( π / 3 ) + sin ( a ) sin ( π / 3 ) ] + [ cos ( a ) cos ( π / 3 ) + sin ( a ) sin ( π / 3 ) ] \large \displaystyle I = [ \cos(a) \cos(\pi/3) + \sin(a) \sin(\pi/3) ] + [\cos(a) \cos(\pi/3) + \sin(a) \sin(\pi/3)]

I = 2 [ cos ( a ) cos ( π / 3 ) + sin ( a ) sin ( π / 3 ) ] \large \displaystyle I = 2[ \cos(a) \cos(\pi/3) + \sin(a) \sin(\pi/3) ]

I = 2 cos ( a π / 3 ) \color{#20A900} \boxed{\large \displaystyle I = 2 \cos(a - \pi/3) }

For I I to be maximum:

cos ( a π / 3 ) = 1 \large \displaystyle \cos(a - \pi/3) = 1

a = 2 k π + π / 3 , a Z \color{#20A900} \boxed{ \large \displaystyle a = 2k\pi + \pi/3, a \in \mathbf{Z} } .

For a a to be minimum, since a a is positive, k = 0 k=0 . So:

a = π / 3 , 1000 a = 1047 \color{#3D99F6} a = \pi/3, \boxed{\large \displaystyle \lfloor 1000a \rfloor = 1047}

Correction Done

Kushal Bose - 4 years ago

U can use differentiation too to find the maximized value.....But this one is also good

Abhisek Mohanty - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...