Maximize volume of pyramid

Calculus Level 3

Maximum volume of right square-based pyramid with the surface area A A equals:

Bonus : Can you do the same with cone?

A A 12 3 \frac{A\sqrt{A}}{12\sqrt{3}} A A 12 2 \frac{A\sqrt{A}}{12\sqrt{2}} Cannot be determined A A 18 \frac{A\sqrt{A}}{18} A A 16 \frac{A\sqrt{A}}{16} A A 12 \frac{A\sqrt{A}}{12}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Uros Stojkovic
Jun 28, 2017

Let a a be the side of the base, H H height of the pyramid, and h h height of the side of the pyramid. Then area of the pyramid is:

A = a 2 + 2 a h A=a^{2}+2ah

Substituting h = a 2 4 + H 2 h=\sqrt{\frac{a^{2}}{4}+H^{2}} , we get:

A = a 2 + 2 a a 2 4 + H 2 = a 2 + a a 2 + 4 H 2 A=a^{2}+2a\sqrt{\frac{a^{2}}{4}+H^{2}}=a^{2}+a\sqrt{a^{2}+4H^{2}}

Factoring and rearranging:

A = a ( a + a 2 + 4 H 2 ) A=a(a+\sqrt{a^{2}+4H^{2}})

a = A a + a 2 + 4 H 2 a=\frac{A}{a+\sqrt{a^{2}+4H^{2}}}

Squaring both sides:

a 2 = A 2 a 2 + 2 a a 2 + 4 H 2 + a 2 + 4 H 2 = A 2 2 a 2 + 2 a a 2 + 4 H 2 + 4 H 2 = A 2 2 A + 4 H 2 a^{2}=\frac{A^{2}}{a^{2}+2a\sqrt{a^{2}+4H^{2}}+a^{2} + 4H^{2}}=\frac{A^{2}}{2a^{2}+2a\sqrt{a^{2}+4H^{2}}+ 4H^{2}}=\frac{A^{2}}{2A+ 4H^{2}} .

Now, the formula V = a 2 H 3 V=\frac{a^{2}H}{3} becomes:

V = A 2 H 3 ( 2 A + 4 H 2 ) V=\frac{A^{2}H}{3(2A+4H^{2})}

Differentiate for H H :

V H = H ( A 2 H 3 ( 2 A + 4 H 2 ) ) \frac{\partial V}{\partial H}=\frac{\partial }{\partial H} (\frac{A^{2}H}{3(2A+4H^{2})})

Since we are looking for the maximum volume, the derivative will be equal to 0 0 . By the quotient rule:

0 = A 2 H H × ( 6 A + 12 H 2 ) ( 6 A + 12 H 2 ) H × A 2 H 0=\frac{\partial A^{2}H}{\partial H} \times (6A+12H^{2})-\frac{\partial (6A+12H^{2})}{\partial H}\times A^{2}H

0 = A 2 × ( 6 A + 12 H 2 ) 24 H × A 2 H 0=A^{2} \times (6A+12H^{2})-24H\times A^{2}H

6 A 3 + 12 A 2 H 2 = 24 A 2 H 2 6A^{3}+12A^{2}H^{2}=24A^{2}H^{2}

6 A 3 = 12 A 2 H 2 6A^{3}=12A^{2}H^{2}

A = 2 H 2 H 2 = A 2 H = A 2 A=2H^{2}\Rightarrow H^{2}=\frac{{A}}{2}\Rightarrow H=\sqrt{\frac{{A}}{2}}

Now plugging this value in formula for a a :

a 2 = A 2 2 A + 4 × 2 A 4 = A 2 4 A a = 1 2 A a^{2}=\frac{A^{2}}{2A+4\times\frac{2A}{4}}=\frac{A^{2}}{4A}\Rightarrow a=\frac{1}{2}\sqrt{A}

Finally:

V m a x = A 4 × A 2 3 V_{max}=\frac{\frac{A}{4}\times \sqrt{\frac{A}{2}}}{3}

V m a x = A A 12 2 V_{max}=\frac{A\sqrt{A}}{12\sqrt{2}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...