(Maximized) Determinant

Algebra Level 4

Let P P be a 3 × 3 3 \times 3 matrix equal to

( 1 3 5 1 x 2 2 4 y ) \begin{pmatrix} 1&3&5 \\ -1&x&2 \\ 2&4&y \end{pmatrix}

with unknown nonzero integers x x and y y .

If the sum of the determinant and the permanent of P P equals 4018 4018 , find the maximum possible determinant of P P .


The answer is 22168.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Efren Medallo
May 18, 2017

The determinant of such matrix P = ( 1 3 5 1 x 2 2 4 y ) P = \begin{pmatrix} 1&3&5 \\ -1&x&2 \\ 2&4&y \end{pmatrix} is

d e t ( P ) = 1 ( x ) ( y ) + 3 ( 2 ) ( 2 ) + 5 ( 1 ) ( 4 ) 2 ( x ) ( 5 ) 4 ( 2 ) ( 1 ) y ( 1 ) ( 3 ) \mathrm{det} (P) = 1(x)(y) + 3(2)(2) + 5(-1)(4) - 2(x)(5) - 4(2)(1) - y(-1)(3) d e t ( P ) = x y 10 x + 3 y 16 \mathrm{det} (P) = xy - 10x + 3y - 16

while its permanent is

p e r m ( P ) = 1 ( x ) ( y ) + 3 ( 2 ) ( 2 ) + 5 ( 1 ) ( 4 ) + 2 ( x ) ( 5 ) + 4 ( 2 ) ( 1 ) + y ( 1 ) ( 3 ) \mathrm{perm} (P) = 1(x)(y) + 3(2)(2) + 5(-1)(4) + 2(x)(5) + 4(2)(1) + y(-1)(3)

p e r m ( P ) = x y + 10 x 3 y \mathrm{perm} (P) = xy + 10x -3y

since we only know that p e r m ( P ) + d e t ( P ) = 4018 \mathrm{perm}(P) + \mathrm{det}(P) = 4018

we can add the two equations and get

2 x y 16 = 4018 2xy - 16 = 4018

x y = 2017 xy = 2017

Now, knowing that x x and y y are strictly integers, it narrows down our options in finding the maximum value of its determinant, since 2017 2017 is prime. Specifically, we have four options: ( x , y ) = ( ± 1 , ± 2017 ) , ( ± 2017 , ± 1 ) (x,y) = (\pm 1, \pm 2017), (\pm 2017, \pm 1) .

Now, substituting these to our determinant equation, we get

d e t ( P ) x = 1 , y = 2017 = 8042 \mathrm{det}(P)_{x=1, y=2017} = 8042

d e t ( P ) x = 1 , y = 2017 = 4040 \mathrm{det}(P)_{x=-1, y=-2017} = -4040

d e t ( P ) x = 2017 , y = 1 = 18166 \mathrm{det}(P)_{x=2017, y=1} = -18166

d e t ( P ) x = 2017 , y = 1 = 22168 \mathrm{det}(P)_{x=-2017, y=-1} = 22168

So there, our maximum possible determinant for P P with the given conditions is 22168 22168 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...