Maximizing a Logarithm

Algebra Level 3

x x and y y are positive values satisfying x + y = 1 4 x + y = \frac {1}{4} . When ln ( y 2 + 4 x y + 7 ) \ln (y^2 + 4xy + 7) attains its maximum (subject to the given constraint), what is the value of 1 x y \frac {1}{xy} ?


The answer is 72.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

13 solutions

Daniel Chiu
Dec 23, 2013

Since ln ( a ) \ln(a) is a monotonically increasing function, to maximize ln ( a ) \ln(a) we must maximize a a . Thus, we must maximize y 2 + 4 x y + 7 y^2+4xy+7 .

We can write x + y = 1 4 4 x = 1 4 y x+y=\dfrac{1}{4}\implies 4x=1-4y Substituting, y 2 + 4 x y + 7 = 3 y 2 + y + 7 y^2+4xy+7=-3y^2+y+7 However, we know how to maximize a quadratic. The maximum occurs when y = 1 2 ( 3 ) = 1 6 y=\dfrac{-1}{2(-3)}=\dfrac{1}{6} , and since x + y = 1 4 x+y=\dfrac{1}{4} , x = 1 12 x=\dfrac{1}{12} . Finally, x y = 1 6 12 = 1 72 xy=\dfrac{1}{6\cdot 12}=\dfrac{1}{72} , and the answer is 72 \boxed{72} .

Very well explained.

Daniel Liu - 7 years, 5 months ago
Aleck Zhao
May 20, 2014

We rearrange the equation x + y = 1 4 x+y=\frac{1}{4} to get x = y + 1 4 . x=-y+\frac{1}{4}. Now we substitute this into the logarithm expression. ln ( y 2 + 4 x y + 7 ) = ln ( y 2 + 4 y ( y + 1 4 ) + 7 ) = ln ( y 2 4 y 2 + y + 7 ) = ln ( 3 y 2 + y + 7 ) . \begin{aligned}\ln(y^2+4xy+7)&=\ln\left(y^2+4y\left(-y+\frac{1}{4}\right)+7\right)\\&=\ln(y^2-4y^2+y+7)\\&=\ln(-3y^2+y+7)\end{aligned}. Since the natural log is an increasing function, ln ( a ) ln ( b ) for a b . \ln(a)\geq\ln(b)\text{ for }a\geq b. Thus, our logarithmic expression is maximized when the expression inside is maximized, which is a quadratic. The vertex of the downward opening parabola is y = b 2 a = 1 6 x = 1 4 1 6 = 1 12 . \begin{aligned}y&=-\frac{b}{2a}=\frac{1}{6}\\ \implies x&=\frac{1}{4}-\frac{1}{6}=\frac{1}{12}\end{aligned}. Finally, our desired answer is 1 x y = 1 1 6 1 12 = 72 . \frac{1}{xy}=\frac{1}{\frac{1}{6}\cdot\frac{1}{12}}=\boxed{72}.

Common mistake: Several solutions that used calculus only checked the first order condition, and didn't check the second order condition to show that we indeed have a maximum.

Calvin Lin Staff - 7 years ago
David Stoner
May 20, 2014

Note that since ln ( x ) \ln(x) is increasing for all x x , the expression attains its maximum when y 2 + 4 x y + 7 y^2+4xy+7 attains its maximum. Note that y 2 + 4 x y = 1 3 ( 3 y ) ( y + 4 x ) 1 12 ( ( 3 y ) + ( y + 4 x ) ) 2 = 1 12 y^2+4xy=\frac{1}{3}(3y)(y+4x)\le \frac{1}{12}((3y)+(y+4x))^2=\frac{1}{12} since a b 1 4 ( a + b ) 2 ab\le \frac{1}{4}(a+b)^2 by AM-GM. Thus y 2 + 4 x y + 7 y^2+4xy+7 attains its maximum when 3 y = y + 4 x 3y=y+4x , which is when y = 2 x y=2x , so y = 1 6 y=\frac{1}{6} and x = 1 12 x=\frac{1}{12} . It follows immediately that the answer is 6 12 = 72 6*12=\boxed{72}

Jianzhi Wang
May 20, 2014

I n ( y 2 + 4 x y + 7 ) = l o g e ( y 2 + 4 x y + 7 ) In( y^2 + 4xy + 7 ) = log_e( y^2 + 4xy + 7 )

Since e e > 1 , y 2 + 4 x y + 7 y^2 + 4xy + 7 will have to be the maximal for I n ( y 2 + 4 x y + 7 ) In( y^2 + 4xy + 7 ) to be the maximal.

Since x = 1 4 y x = \frac {1}{4} - y , we substitute x for y, we can get y 2 + 4 x y + 7 = 3 y 2 + y + 7. y^2 + 4xy + 7 = -3 y^2 + y + 7.

The maximum point for the expression is b 2 a = 1 6 = 1 6 -\frac {b}{2a} = - \frac {1}{-6} = \frac {1}{6}

When y = 1 6 , x = 1 4 y = 1 12 \frac {1}{6}, x = \frac {1}{4} - y = \frac {1}{12} .

The value of 1 x y \frac {1}{xy} will be 1 1 6 1 12 = 72 \frac {1}{\frac {1}{6} \cdot \frac {1}{12}} = 72

Sowmitra Das
May 20, 2014

From the given equation, we have, x = 1 4 y x=\frac{1}{4}-y . Substituting this into y 2 + 4 x y + 7 y^2+4xy+7 , we get, y 2 + 4 y ( 1 4 y ) + 7 = y 3 y 2 + 7 = 3 y ( 1 3 y ) + 7 y^2+4y(\frac{1}{4}-y)+7 =y-3y^2+7 =3y(\frac{1}{3}-y)+7 .

Here, ln ( y 2 + 4 x y + 7 ) = ln ( 3 y ( 1 3 y ) + 7 ) \ln(y^2+4xy+7)=\ln(3y(\frac{1}{3}-y)+7) will be maximum when 3 y ( 1 3 y ) + 7 3y(\frac{1}{3}-y)+7 will be maximum. Again, this will be maximum when y ( 1 3 y ) y(\frac{1}{3}-y) will be maximum.

Now, from the AM-GM Inequality, we have, y ( 1 3 y ) y + 1 3 y 2 y ( 1 3 y ) 1 36 \sqrt{y(\frac{1}{3}-y)}\leq \frac{y+\frac{1}{3}-y}{2}\Rightarrow y(\frac{1}{3}-y)\leq \frac{1}{36} .

So, the maximum value of y ( 1 3 y ) y(\frac{1}{3}-y) will be 1 36 \frac{1}{36} , and, this value will be achieved only when equality is established. There will be equality if and only if, y = 1 3 y y=\frac{1}{3}-y , i.e, y = 1 6 y=\frac{1}{6} . So, the given expression will attain its maximum when y = 1 6 y=\frac{1}{6} . And, then, x = 1 4 1 6 = 1 12 x=\frac{1}{4}-\frac{1}{6}=\frac{1}{12} .

Therefore, when the given expression is maximum, x y = 1 6 . 1 12 = 1 72 1 x y = 72 xy=\frac{1}{6}.\frac{1}{12}=\frac{1}{72}\Rightarrow\frac{1}{xy}=\boxed{72}

Raj Magesh
Dec 24, 2013

To maximize the logarithm, we need to maximize the function inside the logarithm, because the value of a logarithm increases as the value of its operand increases.

x + y = 1 4 x + y = \dfrac{1}{4}

x = 1 4 y x = \dfrac{1}{4} - y

Substituting this expression for x x in the quadratic:

y 2 + 4 ( 1 4 y ) y + 7 y^{2} + 4\left(\dfrac{1}{4} - y\right)y + 7

y 2 + y 4 y 2 + 7 \Rightarrow y^{2} + y - 4y^{2} + 7

3 y 2 + y + 7 \Rightarrow -3y^{2} + y + 7

The graph of this quadratic is an upside-down parabola, due to the negative coefficient on y 2 y^{2} . Hence, the quadratic has a maximum value, not a minimum one. This maximum value occurs at:

d d y ( 3 y 2 + y + 7 ) = 0 \dfrac{d}{dy}\left(-3y^{2} + y + 7\right) = 0

6 y + 1 = 0 \Rightarrow -6y + 1 = 0

y = 1 6 \Rightarrow y = \dfrac{1}{6}

Then,

x = 1 4 1 6 = 1 12 x = \dfrac{1}{4} - \dfrac{1}{6} = \dfrac{1}{12}

x y = 1 6 × 1 12 = 1 72 \Rightarrow xy = \dfrac{1}{6} \times \dfrac{1}{12} = \dfrac{1}{72}

1 x y = 72 \Rightarrow \dfrac{1}{xy} = \boxed{72}

given x + y = 4. from this x = 1/4 - y

substituting this in ln(y^2 + 4y +7), we get ln (-3y^2 + y + 7)

for ln (any polynomial to be maximal,we should differentiate the given polynomial and equate it to zero),

on differentiating -3y^2 = y =7, we get, -6y + 1 = 0 so, y = 1 /6 so ,x = 12

so,1/xy = 1/(1/6 * 1/12) so, 1/xy = 72

The function ln(...) restricted to the line x+y = 1/4 admits a maximum at x = 1/12; hence y = 1/4 - 1/12.

Prathyusha Konda
Dec 24, 2013

x+y = 1/4 => x = 1/4 - y; substituting x in y^2 + 4xy + 7 and finding the value of y to maximise the function; we get, y=1/6. Therefore, x=1/12 and xy=72

Abhishek Sanghai
Jan 5, 2014

differentiate ln(y^{2} +4xy+7) and x+y=1/4
we get, {1/(y^{2}+4xy+7)}*(2yy'+4xy'+4y+0) eq(3) and, 1+y'=0 y'=-1 now put value of y' in eq(3) and find the result

Neeraj Kookada
Jan 5, 2014

Substitute x = ( 1/4 - y ) in the expression ln (y^2 + 4xy + 7) The expression becomes ln (7 + y - 3 y^2). For this expression to be maximum, the differential wrt y should be 0. This gives y = 1/6, and x = 1/12. Therefore, 1/xy = 72

Kaustav Mukherjee
Dec 24, 2013

We are given x + y = 1 4 x+y=\frac{1}{4} and f ( y ) = l n ( y 2 + 4 x y + 7 ) f(y)= ln(y^{2} + 4xy +7)

= > x = 1 4 y 4 => x=\frac{1-4y}{4}

Substituting x into f ( y ) = l n ( y 2 + 4 x y + 7 ) f(y)= ln(y^{2} + 4xy +7)

= > f ( y ) = l n ( y 2 + ( 1 4 y ) y + 7 ) => f(y) = ln(y^{2} + (1-4y)y + 7)

= > f ( y ) = l n ( 3 2 + y + 7 ) => f(y) = ln(-3^{2} + y + 7)

= > d ( f ( y ) d y = 1 3 y 2 + y + 7 => \frac{d(f(y)}{dy} = \frac{1}{-3y^{2}+y+7}

Putting the value of d ( f ( y ) d y \frac{d(f(y)}{dy} = 0

we get,

y = 1 6 y=\frac{1}{6}

and, x = 1 12 x=\frac{1}{12}

Therefore, 1 x y = 72 \frac{1}{xy} = \boxed{72}

Budi Utomo
Dec 24, 2013

With differential Method we've y^2 + 4y(1/4 -y) + 7 become -6y + 1 = 0 "to find maximum value). So, -6y = -1 --> y =1/6.Then x = 1/4 - 1/6 = 1/12. Thus, 1/x.y = 1/(1/12.1/6) = 1/(1/72) = 72. answer : 72

Yes....as log is an incresing function maximizing the quadratic would be good enough.,..

Eddie The Head - 7 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...