Maximizing and minimizing inverse trigo functions

Geometry Level 5

f ( x ) = ( sin 1 x ) 3 + ( cos 1 x ) 3 \large f(x) = {\left(\sin^{-1}x\right)}^3 + {\left(\cos^{-1}x\right)}^3

For real x x , if the sum of the minimum and maximum values of the function above can be represented as a b π 3 \dfrac{a}{b} \pi^3 , where a a and b b are coprime positive integers, then what is the value of a + b a+b ?


The answer is 61.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let { α = sin 1 x sin α = x β = cos 1 x cos β = x \begin{cases} \alpha = \sin^{-1} x & \implies \sin \alpha = x \\ \beta = \cos^{-1} x & \implies \cos \beta = x \end{cases}

x = sin α = cos β = sin ( π 2 β ) α = π 2 β β = π 2 α \begin{aligned} \implies x = \sin \alpha & = \cos \beta \\ & = \sin \left(\frac \pi2 - \beta \right) \\ \implies \alpha & = \frac \pi 2 - \beta \\ \beta & = \frac \pi 2 - \alpha \end{aligned}

Therefore, we have:

f ( x ) = ( sin 1 x ) 3 + ( cos 1 x ) 3 = α 3 + β 3 = α 3 + ( π 2 α ) 3 = α 3 + π 3 8 3 π 2 4 α + 3 π 2 α 2 α 3 = 3 π 2 ( α 2 π 2 α + π 2 12 ) = 3 π 2 ( α 2 π 2 α + π 2 16 + π 2 12 π 2 16 ) = 3 π 2 ( ( α π 4 ) 2 + π 2 48 ) = 3 π 2 ( α π 4 ) 2 + π 3 32 Note that ( α π 4 ) 2 0 f m i n ( x ) = 0 + π 3 32 when ( α π 4 ) 2 = 0 , the minimum. f m a x ( x ) = 3 π 2 ( π 2 π 4 ) 2 + π 3 32 = 7 π 3 8 when ( α π 4 ) 2 is the maximum. \begin{aligned} f(x) & = \left(\sin^{-1}x\right)^3 + \left(\cos^{-1}x\right)^3 \\ & = \alpha^3 + \beta^3 \\ & = \alpha^3 + \left(\frac \pi 2 - \alpha \right)^3 \\ & = \alpha^3 + \frac {\pi^3}8 - \frac {3\pi^2}4 \alpha + \frac {3\pi}2 \alpha^2 - \alpha^3 \\ & = \frac {3\pi}2 \left( \alpha^2 - \frac \pi 2 \alpha + \frac {\pi^2}{12} \right) \\ & = \frac {3\pi}2 \left( \alpha^2 - \frac \pi 2 \alpha + \frac {\pi^2}{16} + \frac {\pi^2}{12} - \frac {\pi^2}{16} \right) \\ & = \frac {3\pi}2 \left( \left(\alpha - \frac {\pi}4\right)^2 + \frac {\pi^2}{48} \right) \\ & = \frac {3\pi}2 \left(\alpha - \frac {\pi}4\right)^2 + \frac {\pi^3}{32} & \small \color{#3D99F6} \text{Note that }\left(\alpha - \frac {\pi}4\right)^2 \ge 0 \\ \implies f_{min}(x) & = {\color{#3D99F6}0} + \frac {\pi^3}{32} & \small \color{#3D99F6} \text{when }\left(\alpha - \frac {\pi}4\right)^2 = 0 \text{, the minimum.} \\ \implies f_{max}(x) & = \frac {3\pi}2 \left({\color{#3D99F6} - \frac \pi 2} - \frac {\pi}4\right)^2 + \frac {\pi^3}{32} = \frac {7\pi^3}8& \small \color{#3D99F6} \text{when }\left(\alpha - \frac {\pi}4\right)^2\text{ is the maximum.} \end{aligned}

Therefore f m i n ( x ) + f m a x ( x ) = 7 π 3 8 + π 3 32 = 29 π 3 32 f_{min}(x) + f_{max}(x) = \dfrac {7\pi^3}8 + \dfrac {\pi^3}{32} = \dfrac {29\pi^3}{32} . a + b = 29 + 32 = 61 \implies a+b = 29+32 = \boxed{61} .

I really love the presentation of your solutions sir.

Tapas Mazumdar - 4 years, 5 months ago

Just a slight mistake here

f ( x ) = ( sin 1 x ) 3 + ( cos 1 x ) 3 = 3 π 2 ( ( α π 4 ) 2 + π 2 48 ) = 3 π 2 ( α π 4 ) 2 + π 3 32 \begin{aligned} f(x) & = {\left(\sin^{-1}x\right)}^3 + {\left(\cos^{-1}x\right)}^3 \\ & \vdots \\ & = \dfrac{3\pi}{2} \left( {\left( \alpha - \dfrac{\pi}{4} \right)}^2 + \dfrac{\pi^2}{48} \right) \\ & = \dfrac{3\pi}{2} {\left( \alpha - \dfrac{\pi}{4} \right)}^2 + \dfrac{\pi^{\color{#D61F06}{3}}}{32} \end{aligned}

Tapas Mazumdar - 4 years, 5 months ago

Log in to reply

Thanks. I have changed it.

Chew-Seong Cheong - 4 years, 5 months ago

I observed that the values of x x where ( sin 1 x ) n + ( cos 1 x ) n (\sin^{-1} x)^n + (\cos^{-1} x)^n becomes maximum / minimum is the same for all positive integers n n . What could be the reason behind this?

Pranshu Gaba - 4 years, 5 months ago
Ayush Verma
Jan 12, 2017

l e t sin 1 x = X , cos 1 x = Y X + Y = π 2 f ( x ) = X 3 + Y 3 = ( X + Y ) [ ( X + Y ) 2 3 X Y ] = π 2 [ π 2 4 3 Y ( π 2 Y ) ] = 3 π 2 [ ( Y π 4 ) 2 + π 2 48 ] f o r Y [ 0 , π ] , f m a x = f Y = π = 7 8 π 3 & f m i n = f Y = π 4 = π 3 32 f m a x + f m i n = 29 32 π 3 a + b = 29 + 32 = 61 let\quad \sin ^{ -1 }{ x=X\quad , } \cos ^{ -1 }{ x=Y } \quad \Rightarrow X+Y=\cfrac { \pi }{ 2 } \\ f\left( x \right) =X^{ 3 }+{ Y }^{ 3 }=\left( X+Y \right) \left[ { \left( X+Y \right) }^{ 2 }-3XY \right] \\ =\cfrac { \pi }{ 2 } \left[ \cfrac { { \pi }^{ 2 } }{ 4 } -3Y\left( \cfrac { \pi }{ 2 } -Y \right) \right] \\ =\cfrac { 3\pi }{ 2 } \left[ { \left( Y-\cfrac { \pi }{ 4 } \right) }^{ 2 }+\cfrac { { \pi }^{ 2 } }{ 48 } \right] \\ \therefore \quad for\quad Y\in \left[ 0,\pi \right] ,\\ { f }_{ max }={ f }_{ Y=\pi }=\cfrac { 7 }{ 8 } { \pi }^{ 3 }\\ \& \quad { f }_{ min }={ f }_{ Y=\cfrac { \pi }{ 4 } }=\cfrac { { \pi }^{ 3 } }{ 32 } \\ \Rightarrow { f }_{ max }+{ f }_{ min }=\cfrac { 29 }{ 32 } { \pi }^{ 3 }\quad \Rightarrow a+b=29+32=61

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...