Maximizing Area with a Projectile

A projectile is fired from the base of a plane that is inclined at an angle α \alpha , from the horizontal, as shown in the figure, with an  initial velocity v v at an angle of inclination θ \theta from the horizontal. Determine θ \theta in degrees such that the area A A between the trajectory and the inclined plane is maximum.

Details and Assumptions

  • tan α = 3 1 \tan\alpha=\sqrt 3-1 .
  • Neglect air resistance.


The answer is 75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Lie
May 12, 2018

At any time t t , the projectile's horizontal and vertical displacement are

x = v t cos θ , y = v t sin θ 1 2 g t 2 . \begin{aligned} x&=vt\cos\theta,\\ y&=vt\sin\theta-\frac 12gt^2. \end{aligned}

If t t is eliminated between these two equtions, the following eqution is obtained

y = x tan θ g 2 v 2 cos 2 θ x 2 . y=x\tan\theta-\frac g{2v^2\cos^2\theta}x^2.

The projectile hits the slope when

y = x tan α . y=x\tan\alpha.

Substituting this value into the equation above, we get

x ( tan θ tan α ) = g 2 v 2 cos 2 θ x 2 . x(\tan\theta-\tan\alpha)=\frac g{2v^2\cos^2\theta}x^2.

Solving for x x , we have

x = 0 , x = 2 v 2 sin ( θ α ) cos θ g cos α . x=0,\ x=\frac {2v^2\sin(\theta-\alpha)\cos\theta}{g\cos\alpha}.

So the area between the trajectory and the inclined plane is

A ( θ ) = 0 2 v 2 sin ( θ α ) cos θ / g cos α [ ( x tan θ g 2 v 2 cos 2 θ x 2 ) x tan α ] d x = [ 1 2 x 2 ( tan θ tan α ) g 6 v 2 cos 2 θ x 3 ] 0 2 v 2 sin ( θ α ) cos θ / g cos α = 2 v 4 3 g 2 cos 3 α sin 3 ( θ α ) cos θ . \begin{aligned} A(\theta)&=\int_0^{2v^2\sin(\theta-\alpha)\cos\theta/g\cos\alpha}\left[\left(x\tan\theta-\frac g{2v^2\cos^2\theta}x^2\right)-x\tan\alpha\right]dx \\&=\left.\left[\frac 12x^2(\tan\theta-\tan\alpha)-\frac g{6v^2\cos^2\theta}x^3\right]\right|_0^{2v^2\sin(\theta-\alpha)\cos\theta/g\cos\alpha} \\&=\frac {2v^4}{3g^2\cos^3\alpha}\sin^3(\theta-\alpha)\cos\theta. \end{aligned}

Setting A ( θ ) A'(\theta) equal to zero gives

0 = 3 cos ( θ α ) cos θ sin ( θ α ) sin θ 0 = 3 tan ( θ α ) tan θ 0 = 3 ( 1 + tan θ tan α ) ( tan θ tan α ) tan θ 0 = tan 2 θ 4 tan α tan θ 3. \begin{aligned} 0&=3\cos(\theta-\alpha)\cos\theta-\sin(\theta-\alpha)\sin\theta \\\implies\qquad0&=3-\tan(\theta-\alpha)\tan\theta \\\implies\qquad0&=3(1+\tan\theta\tan\alpha)-(\tan\theta-\tan\alpha)\tan\theta \\\implies\qquad0&=\tan^2\theta-4\tan\alpha\tan\theta-3. \end{aligned}

The physical root of the quadratic equation with respect to tan θ \tan\theta is

tan θ = 2 tan α + 4 tan 2 α + 3 . \tan\theta=2\tan\alpha+\sqrt{4\tan^2\alpha+3}.

It is easy to show that this value of θ \theta maximizes A A .

In this case, with tan α = 3 1 \tan\alpha=\sqrt 3-1 , we have tan θ = 2 + 3 \tan\theta=2+\sqrt 3 , and so θ = 7 5 \theta=\boxed{75^\circ} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...