Maximizing in a Real Quadratic

Algebra Level 5

a , b a, b and c c are real values satisfying a + 2 b + 3 c = 195 a + 2b + 3c = 195 and a 2 + b 2 + c 2 = 2925 a^2 + b^2 + c^2 = 2925 . The maximum value of a a has the form p q \frac {p}{q} , where p p and q q are positive, coprime integers. What is the value of p + q p + q ?


The answer is 202.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

We have

2 b + 3 c = 195 a 2b+3c=195-a and b 2 + c 2 = 2925 a 2 b^{2} + c^{2} =2925-a^{2}

By using Cauchy - Schwartz Inequality, we obtain

( b 2 + c 2 ) ( 4 + 9 ) ( 2 b + 3 c ) (b^{2}+c^{2})(4+9)\ge(2b+3c)

Now,

( 2925 a 2 ) ( 4 + 9 ) ( 195 a ) (2925-a^{2})(4+9)\ge(195-a)

Hence,

14 a 2 2 ( 195 ) 0 14a^{2} - 2(195)\ge0

Solving for a a gives

a 0 a\le0 or a 195 7 a\ge\frac{195}{7}

Which means that p + q = 195 + 7 = 202 p+q=195+7=202

There are many typing mistakes!

Line 4&6: ( 195 a ) 2 (195-a)^2 instead of ( 195 a ) (195-a)

Line 8: 14 a 2 390 a 0 14a^2-390a\leq 0

Line 10: a 0 a\geq 0 or a 195 7 a\leq \frac{195}{7}

Other than these, your method is just great :)

Christopher Boo - 7 years, 2 months ago

where did you get 4 and 9?

Christian Baldo - 7 years, 1 month ago

Awesome solution !! : )

Karthik Kannan - 7 years, 1 month ago

did the same....it's a simple CAUCHY-SHWARTZ question.

Abhigyan Shekhar - 6 years, 7 months ago

Wat is this cauchy-schwartz thing

prajwal kavad - 6 years, 5 months ago
Wei Liang Gan
May 20, 2014

We rearrange the equations to get 2 b + 3 c = 195 a 2b+3c=195-a and b 2 + c 2 = 2925 a 2 b^2+c^2=2925-a^2 . By Cauchy-Schwarz Inequality, ( 4 + 9 ) ( b 2 + c 2 ) ( 2 b + 3 c ) 2 (4+9)(b^2+c^2) \geq (2b+3c)^2 which using the above substitutions give us 13 ( 2925 a 2 ) ( 195 a ) 2 13(2925-a^2) \geq (195-a)^2

38025 13 a 2 a 2 390 a + 38025 38025 - 13a^2 \geq a^2 - 390a + 38025

14 a 2 390 a 0 14a^2 - 390a \leq 0

a 195 7 a \leq \frac{195}{7} since a a is positive with equality when b = 180 7 b=\frac{180}{7} and c = 270 7 c = \frac{270}{7} based on the equality condition of Cauchy-Schwarz that 4 9 = b 2 c 2 \frac{4}{9}=\frac{b^2}{c^2}

Hence the answer is 195 + 7 = 202 195+7=202

Jp Delavin
May 20, 2014

We want to maximize a a , subject to two constraints a + 2 b + 3 c = 195 a+2b+3c=195 and a 2 + b 2 + c 2 = 2925 a^2+b^2+c^2=2925 . We can use Lagrange multipliers.

Let f ( a , b , c , λ , μ ) = a λ ( a + 2 b + 3 c 195 ) μ ( a 2 + b 2 + c 2 2925 ) f(a,b,c,\lambda,\mu)=a-\lambda(a+2b+3c-195)-\mu(a^2+b^2+c^2-2925) . To get the optimal value, we should equate all partial differentials to zero.

f a = 1 λ 2 a μ = 0 f_a=1-\lambda-2a\mu=0

f b = 2 λ 2 b μ = 0 f_b=-2\lambda-2b\mu=0

f c = 3 λ 2 c μ = 0 f_c=-3\lambda-2c\mu=0

f λ = a 2 b 3 c + 195 = 0 f_{\lambda}=-a-2b-3c+195=0

f μ = a 2 b 2 c 2 + 2925 = 0 f_{\mu}=-a^2-b^2-c^2+2925=0

Given these, we can solve the following using f a = 0 f_a=0 , f b = 0 f_b=0 , and f c = 0 f_c=0 :

a = λ 1 2 μ a=\frac{\lambda-1}{2\mu}

b = 2 λ 2 μ b=\frac{2\lambda}{2\mu}

c = 3 λ 2 μ c=\frac{3\lambda}{2\mu}

Thus, using f λ f_{\lambda} ,

λ 1 2 μ + 2 ( 2 λ 2 μ ) + 3 ( 3 λ 2 μ ) = 195 \frac{\lambda-1}{2\mu}+2\left(\frac{2\lambda}{2\mu}\right)+3\left(\frac{3\lambda}{2\mu}\right)=195

λ 1 + 4 λ + 9 λ 2 μ = 195 \frac{\lambda-1+4\lambda+9\lambda}{2\mu}=195

μ = 14 λ 1 390 \mu=\frac{14\lambda-1}{390}

Using f μ = 0 f_{\mu}=0 ,

19 5 2 ( 14 λ 1 ) 2 ( ( λ 1 ) 2 + ( 2 λ ) 2 + ( 3 λ ) 2 ) = 2925 \frac{195^2}{(14\lambda-1)^2} \left((\lambda-1)^2+(2\lambda)^2+(3\lambda)^2 \right)=2925

Solving this, we will get λ = 1 \lambda=1 or λ = 6 / 7 \lambda=-^6/_7 .

If λ = 1 \lambda=1 , a = 0 a=0 , while if λ = 6 / 7 \lambda=-{}^6/_7 , a = 195 / 7 a={}^{195}/_7 .

Thus, the maximum value of a a is 195 / 7 {}^{195}/_7 . Hence, p + q = 195 + 7 = 202 p+q=195+7=202 .

We can use spherical coordinates: a=15sqrt(13)*cosX b=15sqrt(13)cosYsinX c=15sqrt(13)sinYsinX So 195=a+2b+3c=15sqrt13(cosX+2cosYsinX+3sinYsinX),so we have Sqrt(13)=cosX+sinX(2cosY+3sinY)=cosX+sqrt(13)sinX((2/sqrt13)sinY+(3/sqrt13)cosY) So there is some A: cosA=2/sqrt13 and sinA=3/sqrt13 so We have sqrt13=cosX+sqrt13sin(Y+A)sinX, so we need maximum value for cosX(because a=15sqrt13cosX) so we set sin(Y+A)=1 That means cosX=√13(1-sinX).When squared we get: 1-(sinX)^2=13(1-sinX)^2. We can divide both sides of equation by 1-sinX(it is not 0,because then cosX=0 is not max),so 1+sinX=13-13sinX which means 14sinX=12 ,so sinX=6/7 and cosX=√13/7 Now a=15√13√13/7=195/7 ,so 195+7=202 We can now calculate sinY=2/√13 and cosY=3/√13,so b=15√13x3/√13x6/7=270/7 and c=15√13x2/√13x6/7=180/7

Nikola Djuric - 6 years, 6 months ago
David Stoner
May 20, 2014

Note that ( b 2 + c 2 ) ( 4 + 9 ) ( 2 b + 3 c ) 2 (b^2+c^2)(4+9)\ge(2b+3c)^2 by Cauchy-Schwarz. This means ( 2925 a 2 ) ( 13 ) ( 195 a ) 2 (2925-a^2)(13)\ge (195-a)^2 , or 2 a ( 195 7 a ) 0 2a(195-7a)\ge 0 . This is turn gives 0 a 195 7 0\le a\le \frac{195}{7} , so the answer is 195 + 7 = 202 195+7=\boxed{202} . Note that equality is achievable when a = 195 7 , b = 180 7 , c = 270 7 a=\frac{195}{7}, b=\frac{180}{7}, c=\frac{270}{7} .

Shourya Pandey
May 20, 2014

We have b= 195 a 3 c 2 \frac{195-a-3c}{2} and b 2 + c 2 = 2925 a 2 b^2+c^2=2925-a^2 . The above two equations give us 13 c 2 6 c ( 195 a ) + ( 195 a ) 2 + 4 a 2 11700 13c^2-6c(195-a)+(195-a)^2+4a^2-11700 = 0 The discriminant of the above equation becomes 6240 a 224 a 2 6240a-224a^2 = 32 ( 195 a 7 a 2 ) 32(195a-7a^2) which must be graeter than or equal to 0. So a 195 7 a \leq \frac{195}{7} which means that the solution to the question is 202.

Both of these solutions (using discriminant and Cauchy Schwarz) found that 0 a 195 7 0 \leq a \leq \frac {195}{7} . Yet, they were both marked incomplete. Why?

Calvin Lin Staff - 7 years ago

Log in to reply

Of course, because I didn't show that equality can hold. Equality can hold for ( a , b , c ) = ( 195 / 7 , 180 / 7 , 270 / 7 ) (a,b,c) = (195/7, 180/7, 270/7) .

Shourya Pandey - 5 years, 2 months ago

Log in to reply

Great! Could you edit the solution accordingly? Thanks!

Calvin Lin Staff - 5 years, 2 months ago

We have 2 b + 3 c = 195 a 2b+3c=195-a and b 2 + c 2 = 2925 a 2 b^2+c^2=2925-a^2 . By Cauchy Schwarz Inequality, we have ( 4 + 9 ) ( b 2 + c 2 ) ( 2 b + 3 c ) 2 ( 2 b + 3 c ) 2 (4+9)(b^2+c^2)\geq (2|b|+3|c|)^2\geq (2b+3c)^2 , which gives 13 ( 2925 a 2 ) ( 195 a ) 2 13(2925-a^2)\geq (195-a)^2 or 38025 13 a 2 38025 390 a + a 2 38025-13a^2\geq 38025-390a+a^2 . Thus 14 a 2 390 a 0 14a^2-390a\leq 0 , which gives 2 a ( 7 a 195 ) 0 2a(7a-195)\leq 0 , so 0 a 195 7 0\leq a\leq \frac{195}{7} . Therefore, the maximum value of a a is 195 7 \frac{195}{7} , and p + q = 195 + 7 = 202 p+q=195+7=202 .

黎 李
May 20, 2014

(195-a)^2<=13(2925-a^2)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...