Maximizing Radical Sum

Algebra Level 3

Find the maximum value of 3 x 17 + 71 x \left \lfloor \sqrt{3x-17}+\sqrt{71-x} \right \rfloor .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Sathvik Acharya
Apr 26, 2021

The Cauchy-Schwartz Inequality for 2 2 terms is, ( a 2 + b 2 ) ( c 2 + d 2 ) ( a b + c d ) 2 \left(a^2+b^2\right)\left(c^2+d^2\right)\ge \left(ab+cd\right)^2 Using the above inequality by setting ( a , b ) = ( 3 x 17 , 213 3 x ) (a,b)=\left(\;\sqrt{3x-17},\sqrt{213-3x}\;\right) and ( c , d ) = ( 1 , 1 3 ) (c,d)=\left( 1,\dfrac{1}{\sqrt{3}}\right) , we have, [ ( 3 x 17 ) 2 + ( 213 3 x ) 2 ] [ 1 2 + ( 1 3 ) 2 ] ( 3 x 17 1 + 213 3 x 1 3 ) 2 [ 3 x 17 + 213 3 x ] [ 1 + 1 3 ] ( 3 x 17 + 71 x ) 2 784 3 ( 3 x 17 + 71 x ) 2 3 x 17 + 71 x 784 3 = 16 \begin{aligned} \left[\left(\sqrt{3x-17}\right)^2+\left(\sqrt{213-3x}\right)^2 \right]\left[1^2+\left(\frac{1}{\sqrt{3}}\right)^2\right]&\ge \left(\sqrt{3x-17}\cdot 1+\sqrt{213-3x}\cdot \frac{1}{\sqrt{3}} \right)^2 \\ \left[3x-17+213-3x \right]\left[1+\frac{1}{{3}}\right] &\ge \left(\sqrt{3x-17}+\sqrt{71-x}\right)^2 \\ \frac{784}{3}&\ge \left(\sqrt{3x-17}+\sqrt{71-x}\right)^2 \\ \therefore \; \left \lfloor \sqrt{3x-17}+\sqrt{71-x}\right \rfloor &\le \left \lfloor \sqrt{\frac{784}{3}} \right \rfloor =16 \end{aligned} The maximum value of the expression 3 x 17 + 71 x \left \lfloor \sqrt{3x-17}+\sqrt{71-x} \right\rfloor is 16 \boxed{16}

Note: The equality holds if and only if 3 x 17 1 = 213 3 x 1 3 x = 164 3 \dfrac{\sqrt{3x-17}}{1}= \dfrac{\sqrt{213-3x}}{\dfrac{1}{\sqrt{3}}}\implies x=\dfrac{164}{3} .

Sathvik Acharya - 1 month, 2 weeks ago
Fletcher Mattox
Apr 26, 2021

To further increase the variety of solutions, may I offer the least elegant solution (so far):

1
2
3
4
5
6
7
8
9
from sympy import *
from sympy.abc import x

def f(x):
    return sqrt(3*x - 17) + sqrt(71 - x)

dif = diff(f(x), x)
xmax = solve(dif, x)[0]
print(floor(f(xmax)))

1
16

Veselin Dimov
Apr 26, 2021

For the sake of variety I'll present a solution with calculus (which I admit is far less elegant than Sathvik's one). Consider the function f ( x ) = 3 x 17 + 71 x f(x)=\sqrt{3x-17}+\sqrt{71-x} Using differentiation rules we have: f ( x ) = 3 2 3 x 17 + 1 2 71 x f'(x)=\frac{3}{2\sqrt{3x-17}}+\frac{-1}{2\sqrt{71-x}} The function's extrema are located in the points, where the derivative is 0 0 . Setting the expression for f ( x ) f'(x) equal to zero at x 0 x_0 gives the equation: 3 2 3 x 0 17 = 1 2 71 x 0 3 71 x 0 = 3 x 0 17 \frac{3}{2\sqrt{3x_0-17}}=\frac{1}{2\sqrt{71-x_0}}\Leftrightarrow 3\sqrt{71-x_0}=\sqrt{3x_0-17} After squaring and simplifying, we get x 0 = 164 3 x_0=\frac{164}{3} . To determine whether this is maximum or minimum we need to find for which values of x f ( x ) x\ f(x) is increasing and for which it is decreasing. This is equivalent to solving the inequalities f ( x ) > 0 f'(x)>0 and f ( x ) < 0 f'(x)<0 respectively. After considering the domain of the function the first one yields Increasing: x [ 17 3 ; 164 3 ) \text{Increasing: }x\in\left[\frac{17}{3}; \frac{164}{3}\right) and the second one gives Decreasing: x ( 164 3 ; 71 ] \text{Decreasing: }x\in\left(\frac{164}{3}; 71\right] So at x 0 x_0 the function indeed has its maximum value. It is: f ( x 0 ) = 784 3 16.17 f(x_0)=\sqrt{\frac{784}{3}}\approx16.17 Our final answer is the floor of the maximum value: 16 \fbox{16} .

Dwaipayan Shikari
Apr 27, 2021

f ( x ) = 3 x 17 + 71 x f(x) = \sqrt{3x-17} +\sqrt{71-x} f ( x ) = 3 2 3 x 7 1 2 71 x f'(x) = \dfrac{3}{2\sqrt{3x-7}} -\dfrac{1}{2\sqrt{71-x}}

f ( x ) = 9 4 ( 3 x 7 ) 3 / 2 1 4 ( 71 x ) 3 / 2 \displaystyle f''(x) = \dfrac{-9}{4(3x-7)^{3/2}} -\dfrac{1}{4(71-x)^{3/2}} here f ( x ) < 0 f''(x)<0 so f ( x ) f'(x) is maximum

At maximum f ( x ) = 0 f'(x)= 0 ,

it leads us to solve 3 2 3 x 7 = 1 2 71 x \displaystyle\dfrac{3}{2\sqrt{3x-7}} = \dfrac{1}{2\sqrt{71-x}} 3 x 17 9 = 71 x x = 164 3 \displaystyle \implies \dfrac{3x-17}{9} =71-x \implies x= \dfrac{164}{3}

Maximum is at x = 164 3 x= \dfrac{164}{3} ,

Maximum value = 3. 164 3 17 + 71 164 3 = 28 3 = 16.165.. = \sqrt{3.\frac{164}{3}-17 }+\sqrt{71-\frac{164}{3} } = \dfrac{28}{\sqrt{3}} = 16.165..

Answer is 16 \boxed{16}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...