Maximizing the Almost Twin Expressions!

Algebra Level 5

x 1 y z + y 1 z x + z 1 x y \large{\dfrac{x}{1-yz} + \dfrac{y}{1-zx} + \dfrac{z}{1-xy} }

x 1 + y z + y 1 + z x + z 1 + x y \large{\dfrac{x}{1+yz} + \dfrac{y}{1+zx} + \dfrac{z}{1+xy} }

Suppose that x , y , z 0 x,y,z \geq 0 and x 2 + y 2 + z 2 = 1 x^2 + y^2 + z^2 = 1 . Let the maximum values of the expressions above be A A and B B . Then find the value of 100 ( A + B ) \lfloor 100(A+B) \rfloor .


The answer is 401.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Satyajit Mohanty
Aug 1, 2015

Let us work for A A or the first expression.

Let S = x 1 y z + y 1 z x + z 1 x y S=\dfrac{x}{1-yz} + \dfrac{y}{1-zx} + \dfrac{z}{1-xy} .

Suppose x y z 0 xyz \neq 0 , so that x , y , z ( 0 , 1 ) x,y,z \in (0,1) .

Note that x 1 y z = x + x y z 1 y z \dfrac{x}{1-yz} = x + \dfrac{xyz}{1-yz} . Hence,

S = x + y + z + x y z ( 1 1 y z + 1 1 z x + 1 1 x y ) . . . . ( 1 ) S=x+y+z+xyz \left(\dfrac{1}{1-yz} + \dfrac{1}{1-zx} + \dfrac{1}{1-xy} \right)\quad ....(1)

Since 1 y z 1 1 2 ( y 2 + z 2 ) = 1 2 ( 1 + x 2 ) 1-yz \geq 1 - \dfrac12 \left( y^2 + z^2 \right) = \dfrac12 \left(1+ x^2 \right) = 1 2 ( 2 x 2 + y 2 + z 2 ) 2 x 2 x 2 y 2 z 2 4 = 2 x y z = \dfrac12 \left(2x^2 + y^2 + z^2 \right) \geq 2 \sqrt[4]{x^2x^2y^2z^2} = 2x\sqrt{yz}

we have, using the AM-GM Inequality several times, that

x y z ( 1 1 y z + 1 1 z x + 1 1 x y ) xyz \left(\dfrac{1}{1-yz} + \dfrac{1}{1-zx} + \dfrac{1}{1-xy} \right) x y z 2 ( 1 x y z + 1 y z x + 1 z x y ) \leq \dfrac{xyz}2 \left( \dfrac1{x\sqrt{yz}} + \dfrac1{y\sqrt{zx}} + \dfrac1{z\sqrt{xy}} \right) 1 2 ( y z + z x + x y ) 1 2 ( x + y 2 + z + x 2 + x + y 2 ) \dfrac12 (\sqrt{yz} + \sqrt{zx} + \sqrt{xy}) \leq \dfrac12 \left( \dfrac{x+y}2 + \dfrac{z+x}2 + \dfrac{x+y}2 \right) = 1 2 ( x + y + z ) . . . . ( 2 ) = \dfrac12(x+y+z) \quad ....(2)

From (1) and (2), we have, using the Cauchy-Schwarz Inequality, that: S 3 2 ( x + y + z ) 3 2 ( 1 2 + 1 2 + 1 2 ) 1 / 2 ( x 2 + y 2 + z 2 ) 1 / 2 = 3 3 2 S \leq \dfrac32 (x+y+z) \leq \dfrac32(1^2 + 1^2 + 1^2)^{1/2}(x^2 + y^2 + z^2)^{1/2} = \dfrac{3\sqrt{3}}{2}

Thus A = 3 3 2 A = \boxed{\dfrac{3\sqrt{3}}{2}} .


Similarly, by using the concept of Lagrange-Multipliers, we'll obtain B = 2 B = \boxed{\sqrt{2}} . Please check this solution after a few days so that I'll prove B = 2 B=\sqrt{2} .

Therefore A + B 4.0122 A+B \approx 4.0122 , hence the answer.

what is lagrange multipliers?

Dev Sharma - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...