1 − y z x + 1 − z x y + 1 − x y z
1 + y z x + 1 + z x y + 1 + x y z
Suppose that x , y , z ≥ 0 and x 2 + y 2 + z 2 = 1 . Let the maximum values of the expressions above be A and B . Then find the value of ⌊ 1 0 0 ( A + B ) ⌋ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Let us work for A or the first expression.
Let S = 1 − y z x + 1 − z x y + 1 − x y z .
Suppose x y z = 0 , so that x , y , z ∈ ( 0 , 1 ) .
Note that 1 − y z x = x + 1 − y z x y z . Hence,
S = x + y + z + x y z ( 1 − y z 1 + 1 − z x 1 + 1 − x y 1 ) . . . . ( 1 )
Since 1 − y z ≥ 1 − 2 1 ( y 2 + z 2 ) = 2 1 ( 1 + x 2 ) = 2 1 ( 2 x 2 + y 2 + z 2 ) ≥ 2 4 x 2 x 2 y 2 z 2 = 2 x y z
we have, using the AM-GM Inequality several times, that
x y z ( 1 − y z 1 + 1 − z x 1 + 1 − x y 1 ) ≤ 2 x y z ( x y z 1 + y z x 1 + z x y 1 ) 2 1 ( y z + z x + x y ) ≤ 2 1 ( 2 x + y + 2 z + x + 2 x + y ) = 2 1 ( x + y + z ) . . . . ( 2 )
From (1) and (2), we have, using the Cauchy-Schwarz Inequality, that: S ≤ 2 3 ( x + y + z ) ≤ 2 3 ( 1 2 + 1 2 + 1 2 ) 1 / 2 ( x 2 + y 2 + z 2 ) 1 / 2 = 2 3 3
Thus A = 2 3 3 .
Similarly, by using the concept of Lagrange-Multipliers, we'll obtain B = 2 . Please check this solution after a few days so that I'll prove B = 2 .
Therefore A + B ≈ 4 . 0 1 2 2 , hence the answer.