Maximizing the side of a square.

Geometry Level pending

In right O A B \triangle{OAB} , O O is the center of the sector of the circle with radius r r and in square R W V U RWVU with side length s s , W W is on O A \overline{OA} and R R is on the sector of the circle and V V and U U are on A B \overline{AB} , where A B = 1 \overline{AB} = 1 .

Find m a x ( s ) max(s) .


The answer is 0.2071067811865475.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
May 21, 2021

x 2 + y 2 = r 2 x^2 + y^2 = r^2 and x = r s r 2 2 s r + s 2 + y 2 = r 2 x = r - s \implies r^2 - 2sr + s^2 + y^2 = r^2 \implies

y = 2 s r s 2 R ( r s , 2 s r s 2 ) y = \sqrt{2sr - s^2} \implies R(r - s, \sqrt{2sr - s^2}) and m O A = 1 r y = 1 r x m_{OA} = \dfrac{1}{r} \implies y = \dfrac{1}{r}x

and W : ( r s , y ) y = r s r W : ( r s , r s r ) W:(r - s, y) \implies y = \dfrac{r - s}{r} \implies W:(r - s, \dfrac{r - s}{r}) \implies

s = W R = r s r 2 s r s 2 r s = r s 2 s r s 2 r s = \overline{WR} = \dfrac{r - s}{r} - \sqrt{2sr - s^2} \implies rs = r - s - \sqrt{2sr - s^2}r \implies

( 2 s r s 2 ) r 2 = ( r s ( 1 + r ) ) 2 = r 2 2 r ( 1 + r ) s + ( 1 + r ) 2 s 2 2 s r 3 s 2 r 2 = r 2 2 r ( 1 + r ) s + ( 1 + r ) 2 s 2 (2sr - s^2)r^2 = (r - s(1 + r))^2 = r^2 - 2r(1 + r)s + (1 + r)^2s^2 \implies 2sr^3 - s^2r^2 = r^2 - 2r(1 + r)s + (1 + r)^2s^2 \implies

( 2 r 2 + 2 r + 1 ) s 2 2 r ( r 2 + r + 1 ) s + r 2 = 0 s = r 2 + r + 1 ± ( r 2 + r ) 2 r 2 + 2 r + 1 (2r^2 + 2r + 1)s^2 - 2r(r^2 + r + 1)s + r^2 = 0 \implies s = \dfrac{r^2 + r + 1 \pm (r^2 + r)}{2r^2 + 2r + 1}

( + ) s = r (+) \implies s = r \therefore we drop s = r s = r and choose s = r 2 r 2 + 2 r + 1 s = \dfrac{r}{2r^2 + 2r + 1} \implies

d s d r = 1 2 r 2 ( 2 r 2 + 2 r + 1 ) 2 = 0 r = 1 2 \dfrac{ds}{dr} = \dfrac{1 - 2r^2}{(2r^2 + 2r + 1)^2} = 0 \implies r = \dfrac{1}{\sqrt{2}} and

1 2 < r < 1 2 d s d r > 0 -\dfrac{1}{\sqrt{2}} < r < \dfrac{1}{\sqrt{2}} \implies \dfrac{ds}{dr} > 0 and r > 1 2 < 0 r > \dfrac{1}{\sqrt{2}} < 0 \implies a max occurs at r = 1 2 r = \dfrac{1}{\sqrt{2}}

s m a x = 1 2 + 2 2 = 2 1 2 0.2071067811865475 \implies s_{max} = \dfrac{1}{2 + 2\sqrt{2}} = \dfrac{\sqrt{2} - 1}{2} \approx \boxed{0.2071067811865475 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...