Cunning Maximum

Algebra Level 4

( a b ) 2 + ( b c ) 2 + ( c a ) 2 + 12 a b c + 72 a b + b c + c a a b c 2 \frac{ (ab)^2 + (bc)^2 + (ca)^2 + 12abc + 72}{ab+bc+ca} - \frac{abc}2

If 1 a , b , c 3 1 \leq a,b,c \leq 3 such that a + b + c = 6 a+b+c=6 , find the maximum value of the expression above.

14.525 13 14.545 14

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Since ( a b ) 2 + ( b c ) 2 + ( c a ) 2 0 (a-b)^2+(b-c)^2+(c-a)^2\ge0 , we get: 3 ( a b + b c + c a ) ( a + b + c ) 2 = 36 3(ab+bc+ca)\le(a+b+c)^2=36 , implying a b + b c + c a 12 ab+bc+ca\le 12

Since 1 a , b , c 3 1\le a, b, c\le 3 , we have:

{ ( a 1 ) ( b 1 ) ( c 1 ) 0 ( 3 a ) ( 3 b ) ( 3 c ) 0 \qquad\;\left\{\begin{array}{l}(a-1)(b-1)(c-1)\ge0\\(3-a)(3-b)(3-c)\ge0\end{array}\right.

Or { a b c ( a b + b c + c a ) + 5 0 27 + 3 ( a b + b c + c a ) a b c 0 \quad\left\{\begin{array}{l}abc-(ab+bc+ca)+5\ge0\\-27+3(ab+bc+ca)-abc\ge0\end{array}\right.

This implies 2 ( a b + b c + c a ) 22 0 a b + b c + c a 11 2(ab+bc+ca)-22\ge0 \Leftrightarrow ab+bc+ca\ge11 .

We have:

P = ( a b ) 2 + ( b c ) 2 + ( c a ) 2 + 12 a b c + 72 a b + b c + c a a b c 2 P=\dfrac{ (ab)^2 + (bc)^2 + (ca)^2 + 12abc + 72}{ab+bc+ca} - \dfrac{abc}{2}

( a b ) 2 + ( b c ) 2 + ( c a ) 2 + 2 ( a + b + c ) a b c + 72 a b + b c + c a a b + b c + c a 5 2 \quad\le\dfrac{(ab)^2+(bc)^2+(ca)^2+2(a+b+c)abc+72}{ab+bc+ca}-\dfrac{ab+bc+ca-5}{2}

= ( a b + b c + c a ) 2 + 72 a b + b c + c a a b + b c + c a 5 2 \quad=\dfrac{(ab+bc+ca)^2+72}{ab+bc+ca}-\dfrac{ab+bc+ca-5}{2}

= t 2 + 72 t t 5 2 \quad=\dfrac{t^2+72}{t}-\dfrac{t-5}{2}\qquad\qquad , where t = a b + b c + c a t=ab+bc+ca .

= t 2 + 5 t + 144 2 t \quad=\dfrac{t^2+5t+144}{2t}

= 160 11 + ( t 11 ) ( 11 t 144 ) 22 t \quad=\dfrac{160}{11}+\dfrac{(t-11)(11t-144)}{22t}

160 11 \quad\le\dfrac{160}{11}\qquad\qquad (since 11 t 12 11\le t\le12 )

If a = 1 , b = 2 , c = 3 a=1, b=2, c=3 , then P = 160 11 P=\dfrac{160}{11}

So, the maximum value of P P is 160 11 14.545 \boxed{\dfrac{160}{11}\approx14.545}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...