Maximum

Geometry Level 4

The diagram above shows three right-angled triangles, where B C = 14 BC=14 , G F = 10 GF=10 , D E = 7 DE=7 and B C A = B D E = F G D = θ \angle BCA=\angle BDE=\angle FGD=\theta .

Find the maximum value of A B + B D + D F AB+BD+DF .


This is a part of the Set .


The answer is 25.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Alan Yan
Aug 31, 2015

We know that A B = 14 sin θ AB = 14\sin \theta

B D = 7 cos θ BD = 7 \cos \theta

D F = 10 sin θ DF = 10 \sin \theta

Adding them, we get the desired expression as 24 sin θ + 7 cos θ 24 \sin \theta + 7 \cos \theta We need to find the maximum of this.

By Cauchy - Swartz, we know that

( 2 4 2 + 7 2 ) ( sin 2 θ + cos 2 θ ) ( 24 sin θ + 7 cos θ ) 2 (24^2 + 7^2)(\sin^2 \theta + \cos^2 \theta) \geq (24 \sin \theta + 7 \cos \theta)^2

25 24 sin θ + 7 cos θ \implies 25 \geq 24 \sin \theta + 7 \cos \theta

Equality holds iff θ = tan 1 24 7 \theta = \tan^{-1}{\frac{24}{7}}

Therefore 25 \boxed{25} is the maximum.

Chew-Seong Cheong
Nov 25, 2015

A B + B D + D F = B C sin θ + D E cos θ + G F sin θ = 14 sin θ + 7 cos θ + 10 sin θ = 24 sin θ + 7 cos θ Note that 7 2 + 2 4 2 = 2 5 2 = 25 ( 24 25 sin θ + 7 25 cos θ ) Let tan ϕ = 7 24 = 25 ( sin θ cos ϕ + sin ϕ cos θ ) = 25 sin ( θ + ϕ ) \begin{aligned} AB+BD+DF & = BC\sin \theta + DE\cos \theta + GF\sin \theta \\ & = 14 \sin \theta + 7 \cos \theta + 10 \sin \theta \\ & = 24 \sin \theta + 7 \cos \theta \quad \quad \quad \quad \quad \quad \small \color{#3D99F6}{\text{Note that }7^2+24^2=25^2} \\ & = 25 \left( \frac{24}{25} \sin \theta + \frac{7}{25} \cos \theta \right) \quad \quad \small \color{#3D99F6}{\text{Let } \tan \phi = \frac{7}{24}} \\ & = 25 \left(\sin \theta \cos \phi + \sin \phi \cos \theta \right) \\ & = 25 \sin (\theta + \phi) \end{aligned}

Since maximum of sin ( θ + ϕ ) = 1 \sin (\theta + \phi) = 1 , therefore maximum of A B + B D + D F = 25 AB+BD+DF = \boxed{25} .

Gian Sanjaya
Aug 31, 2015

Assume the random value of AB+BD+DF is n and the answer is m. Notice that with the given data:

n = A B + B D + D F = 14 sin θ + 7 cos θ + 10 sin θ = 24 sin θ + 7 cos θ = ( 24 tan θ + 7 ) cos θ n=AB+BD+DF=14\sin\theta+7\cos\theta+10\sin\theta=24\sin\theta+7\cos\theta=(24\tan\theta+7)\cos\theta

d n d θ = d d θ ( 24 sin θ + 7 cos θ ) = 24 cos θ 7 sin θ \frac{dn}{d\theta}=\frac{d}{d\theta}(24\sin\theta+7\cos\theta)=24\cos\theta-7\sin\theta

When this first derivative equals zero, since the value of n is upper and lower bounded, then there is a value of θ \theta that maximize the value of n. We get 24 cos θ = 7 sin θ 24\cos\theta=7\sin\theta , which means tan θ = 24 7 \tan\theta=\frac{24}{7} and this, with cos 2 θ + sin 2 θ = 1 \cos^2\theta+\sin^2\theta=1 , results cos θ = ± 7 2 4 2 + 7 2 = ± 7 25 \cos\theta=\pm\frac{7}{\sqrt{24^2+7^2}}=\pm\frac{7}{25} . We take the positive value because it makes n positive and thus maximum. Hence:

m = ( 24 ( 24 7 ) + 7 ) ( 7 25 ) = 25 m=(24\big(\frac{24}{7})+7)\big(\frac{7}{25})=25

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...