Maximum

Geometry Level 3

Find the maximum value of the expression below for real θ \theta .

1 sin 2 θ + 3 sin θ cos θ + 5 cos 2 θ \frac{1}{\sin^2\theta+3\sin\theta\cos\theta\ +5\cos^2\theta}


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 16, 2016

X = 1 sin 2 θ + 3 sin θ cos θ + 5 cos 2 θ sin 2 θ + cos 2 θ = 1 = 1 1 + 3 sin θ cos θ + 4 cos 2 θ = 1 1 + 3 2 ( 2 sin θ cos θ ) + 2 ( 2 cos 2 θ 1 ) + 2 = 1 3 + 3 2 sin ( 2 θ ) + 2 cos ( 2 θ ) = 1 3 + 5 2 ( 3 5 sin ( 2 θ ) + 4 5 cos ( 2 θ ) ) = 1 3 + 5 2 ( sin ( 2 θ ) cos ϕ + sin ϕ cos ( 2 θ ) ) where sin ϕ = 4 5 , cos ϕ = 3 5 ϕ = tan 1 4 3 = 1 3 + 5 2 sin ( 2 θ + tan 1 4 3 ) \begin{aligned} X & = \frac{1}{\color{#3D99F6}{\sin^2 \theta} + 3\sin \theta \cos \theta + \color{#3D99F6}{5 \cos^2 \theta}} \quad \quad \small \color{#3D99F6}{\sin^2 \theta + \cos^2 \theta = 1} \\ & = \frac{1}{\color{#3D99F6}{1} + 3\sin \theta \cos \theta + \color{#3D99F6}{4 \cos^2 \theta}} \\ & = \frac{1}{1 + \frac{3}{2}\left(2\sin \theta \cos \theta \right) + 2\left(2 \cos^2 \theta - 1\right) + 2} \\ & = \frac{1}{3 + \frac{3}{2}\sin (2\theta) + 2 \cos (2 \theta)} \\ & = \frac{1}{3 + \frac{5}{2}\left(\frac{3}{5} \sin (2\theta) + \frac{4}{5} \cos (2 \theta)\right)} \\ & = \frac{1}{3 + \frac{5}{2}\left(\sin (2\theta) \cos \phi + \sin \phi \cos (2 \theta)\right)} \quad \quad \small \color{#3D99F6}{\text{where }\sin \phi = \frac{4}{5}, \ \cos \phi = \frac{3}{5} \implies \phi = \tan^{-1} \frac{4}{3}} \\ & = \frac{1}{3 + \frac{5}{2} \sin \left(2 \theta + \tan^{-1} \frac{4}{3} \right)} \end{aligned}

X X is maximum when the denominator 3 + 5 2 sin ( 2 θ + tan 1 4 3 ) 3 + \frac{5}{2} \sin \left(2 \theta + \tan^{-1} \frac{4}{3} \right) is minimum, and 3 + 5 2 sin ( 2 θ + tan 1 4 3 ) 3 + \frac{5}{2} \sin \left(2 \theta + \tan^{-1} \frac{4}{3} \right) is minimum when sin ( 2 θ + tan 1 4 3 ) = 1 \sin \left(2 \theta + \tan^{-1} \frac{4}{3} \right) = -1 .

X m a x = 1 3 + 5 2 ( 1 ) = 1 1 2 = 2 \begin{aligned} \implies X_{max} & = \frac{1}{3 + \frac{5}{2} \left( -1 \right)} = \frac{1}{\frac{1}{2}} = \boxed{2} \end{aligned}

Rakshit, put a backslash in from of sin, cos, tan to make them appear proper standard in LaTex. Use dfrac instead of frac to fixed the size of nominator and denominator. I was given the right to edit problem and I edit a few of yours.

Chew-Seong Cheong - 5 years, 1 month ago

Log in to reply

Ok sir! I will remember now.

Rakshit Joshi - 5 years, 1 month ago

Sir, Can you please explain your last expression where you converted into t a n 1 tan^-1

Rakshit Joshi - 5 years, 1 month ago

Log in to reply

I have added a line to explain it.

Chew-Seong Cheong - 5 years, 1 month ago

Log in to reply

I am dump.Now understood very well,sir.

Rakshit Joshi - 5 years, 1 month ago

Very nice....

Sanchit Sharma - 5 years, 1 month ago

How to write the blue colored message?

. . - 4 months ago

Log in to reply

Hope that this help.

Chew-Seong Cheong - 4 months ago

Log in to reply

It gonna be very hard to remember(or memorize) the LaTeX commands.

. . - 4 months ago
Sathvik Acharya
Dec 9, 2020

In order to maximize the given expression, it suffices to minimize the denominator. Using a few trigonometric identities , sin 2 θ + 3 sin θ cos θ + 5 cos 2 θ = ( sin 2 θ + cos 2 θ ) + 3 2 ( 2 sin θ cos θ ) + 2 ( 2 cos 2 θ ) = 1 + 3 2 sin 2 θ + 2 ( cos 2 θ + 1 ) \sin^2\theta+3\sin\theta\cos\theta+5\cos^2\theta=(\sin^2\theta+\cos^2\theta)+\frac{3}{2}\cdot(2\sin\theta\cos\theta)+2\cdot(2\cos^2\theta)=1+\frac{3}{2}\sin2\theta+2(\cos2\theta+1) On further simplification, sin 2 θ + 3 sin θ cos θ + 5 cos 2 θ = 3 sin 2 θ + 4 cos 2 θ 2 + 3 \sin^2\theta+3\sin\theta\cos\theta+5\cos^2\theta=\frac{3\sin2\theta+4\cos2\theta}{2}+3 The point of the above manipulation was to use the following lemma : a 2 + b 2 a sin x + b cos x a 2 + b 2 -\sqrt{a^2+b^2} \le a\sin x+b\cos x \le \sqrt{a^2+b^2} 3 sin 2 θ + 4 cos 2 θ 2 + 3 3 2 + 4 2 2 + 3 = 1 2 \implies \frac{3\sin2\theta+4\cos2\theta}{2}+3\ge \frac{-\sqrt{3^2+4^2}}{2}+3=\frac{1}{2} Therefore, max ( 1 sin 2 θ + 3 sin θ cos θ + 5 cos 2 θ ) = 1 min ( sin 2 θ + 3 sin θ cos θ + 5 cos 2 θ ) = 1 1 2 = 2 \text{max}\left (\frac{1}{\sin^2\theta+3\sin\theta\cos\theta+5\cos^2\theta}\right )=\frac{1}{\text{min}\left(\sin^2\theta+3\sin\theta\cos\theta+5\cos^2\theta\right )}=\frac{1}{\frac{1}{2}}=\boxed{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...