Maximum Value

Geometry Level 4

( sin x ) ( sin 3 x + 3 ) + ( cos x ) ( cos 3 x + 4 ) + sin 2 2 x 2 + 4 cos x + 5 \left(\sin x\right) \left(\sin^3 x + 3\right) + \left(\cos x\right) \left(\cos^3 x + 4\right) + \frac{\sin^2 2x}2 + 4\cos x + 5

What is the maximum value of the expression above? Give your answer to 3 decimal places.


The answer is 14.544.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 25, 2017

y = sin x ( sin 3 x + 3 ) + cos x ( cos 3 x + 4 ) + sin 2 2 x 2 + 4 cos x + 5 = sin 4 x + 3 sin x + cos 4 x + 4 cos x + 2 sin 2 x cos 2 x + 4 cos x + 5 = sin 4 x + 2 sin 2 x cos 2 x + cos 4 x + 3 sin x + 8 cos x + 5 = ( sin 2 x + cos 2 x ) 2 + 3 sin x + 8 cos x + 5 = 1 + 3 sin x + 8 cos x + 5 = 3 sin x + 8 cos x + 6 = 73 ( 3 73 sin x + 8 73 cos x ) + 6 = 73 sin ( x + tan 1 8 3 ) + 6 \begin{aligned} y & = \sin x \left(\sin^3 x + 3\right) + \cos x \left(\cos^3 x + 4\right) + \frac{\sin^2 2x}2 + 4\cos x + 5 \\ & = \sin^4 x + 3\sin x + \cos^4 x + 4\cos x + 2\sin^2 x \cos^2 x + 4\cos x + 5 \\ & = {\color{#3D99F6} \sin^4 x + 2\sin^2 x \cos^2 x + \cos^4 x} + 3\sin x + 8\cos x + 5 \\ & = {\color{#3D99F6}\left( \sin^2 x + \cos^2 x \right)^2} + 3\sin x + 8\cos x + 5 \\ & = {\color{#3D99F6}1} + 3\sin x + 8\cos x + 5 \\ & = 3\sin x + 8\cos x + 6 \\ & = \sqrt{73}\left(\frac 3{\sqrt{73}} \sin x + \frac 8{\sqrt{73}}\cos x \right) + 6 \\ & = \sqrt{73}\sin \left(x+ \tan^{-1} \frac 83\right) + 6 \end{aligned}

Since max ( sin ( x + tan 1 8 3 ) ) = 1 \max \left(\sin \left(x+ \tan^{-1} \frac 83\right) \right) = 1 , max ( y ) = 73 + 6 14.544 \implies \max (y) = \sqrt{73}+6 \approx \boxed{14.544} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...