Maximum area 3-4-5

Calculus Level 3

Given a point O O , a triangle A B C ABC is constructed so that O A = 3 , O B = 4 , O C = 5 OA=3, OB=4, OC=5 , as shown in the diagram. Let S S be the largest possible area among all such triangles. Which integer shown is closest to 100 S ? 100S?

2048 2049 2050 2051

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 20, 2021

Let the central angles at O O be α \alpha , β \beta , and γ \gamma as shown. Then the area of A B C \triangle ABC is

S = 1 2 ( 4 5 sin α + 5 3 sin β + 3 4 sin γ ) Since α + β + γ = 2 π = 10 sin α + 7.5 sin β 6 sin ( α + β ) \begin{aligned} S & = \frac 12 (4 \cdot 5 \sin \alpha + 5 \cdot 3 \sin \beta + 3 \cdot 4 \sin \gamma) & \small \blue{\text{Since }\alpha + \beta + \gamma = 2\pi} \\ & = 10 \sin \alpha + 7.5 \sin \beta - 6 \sin (\alpha + \beta) \end{aligned}

Let us fix the value of β \beta and find the value of α \alpha which maximize S S . (Note that S S has a minimum value of 0 0 , when α = 0 \alpha = 0 .)

S α = 10 cos α 6 cos ( α + β ) Putting S α = 0 10 cos α = 6 cos ( α + β ) \begin{aligned} \frac {\partial S}{\partial \alpha} & = 10 \cos \alpha - 6 \cos (\alpha + \beta) & \small \blue{\text{Putting } \frac {\partial S}{\partial \alpha} = 0} \\ \implies 10 \cos \alpha & = 6 \cos (\alpha + \beta) \end{aligned}

Similarly, fixing the value of α \alpha , the value of β \beta which maximizes S S is given by 7.5 cos β = 6 cos ( α + β ) 7.5 \cos \beta = 6 \cos (\alpha + \beta) , which in turn equals to 10 cos α 10 \cos \alpha . Then S S is maximized when 10 cos α = 7.5 cos β cos β = 4 3 cos α 10 \cos \alpha = 7.5 \cos \beta \implies \cos \beta = \frac 43 \cos \alpha and

10 cos α = 6 cos ( α + β ) 5 cos α = 3 ( cos α cos β sin α sin β ) = 4 cos 2 α ( 1 cos 2 α ) ( 9 16 cos 2 α ) \begin{aligned} 10 \cos \alpha & = 6 \cos (\alpha + \beta) \\ 5 \cos \alpha & = 3 (\cos \alpha \cos \beta - \sin \alpha \sin \beta) \\ & = 4 \cos^2 \alpha - \sqrt{(1-\cos^2 \alpha)(9 - 16\cos^2 \alpha)} \end{aligned}

Solving the equation above, we have cos α 0.372402014 cos β 0.496536018 \cos \alpha \approx -0.372402014 \implies \cos \beta \approx -0.496536018 , sin α 0.928071517 \sin \alpha \approx 0.928071517 , sin β 0.868016119 \sin \beta \approx 0.868016119 , sin ( α + β ) 0.784071886 \sin (\alpha+\beta) \approx -0.784071886 , and

S = 10 sin α + 7.5 sin β 6 sin ( α + β ) 20.49526738 S = 10 \sin \alpha + 7.5 \sin \beta - 6 \sin (\alpha + \beta) \approx 20.49526738

The required answer 100 S = 2050 \lfloor 100S \rceil = \boxed{2050} .

Same problem

Wolframe - (0,0) - is orthocenter of triangle.

100 S = 2049.527 100S=2049.527

Yuriy Kazakov - 2 weeks, 5 days ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...