Maximum area of a strange triangle

Geometry Level 3

Consider an ellipse x 2 144 + y 2 64 = 1 \dfrac{x^2}{144} + \dfrac{y^2}{64} = 1 . A line is drawn tangent to the ellipse at a point P P . A line segment drawn from the origin to a point Q Q on this line is perpendicular to this tangent line.

Find the maximum area of P O Q \triangle POQ .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Avineil Jain
May 22, 2014

Let tangent to any point P ( a c o s θ , b s i n θ ) P(acosθ, bsinθ) on the ellipse x 2 a 2 + y 2 b 2 = 1 \dfrac{x^{2}}{a^{2}} + \dfrac{y^{2}}{b^{2}} = 1 be drawn.

Equation of tangent is x c o s θ a + y s i n θ b = 1 \dfrac{xcosθ}{a} + \dfrac{ysinθ}{b} = 1

O Q = 1 c o s 2 θ a 2 + s i n 2 θ b 2 OQ = |\dfrac{1}{\sqrt{\frac{cos^{2}θ}{a^{2}} + \frac{sin^{2}θ}{b^{2}}}}|

Note that P Q PQ is the distance of center to normal at P P

Equation of normal is a x c o s θ b y s i n θ = a 2 b 2 \dfrac{ax}{cosθ} - \dfrac{by}{sinθ} = a^{2} - b^{2}

P Q = a 2 b 2 a 2 c o s 2 θ + b 2 s i n 2 θ PQ = |\dfrac{a^{2} - b^{2}}{\sqrt{\frac{a^{2}}{cos^{2}θ} + \frac{b^{2}}{sin^{2}θ}}}|

Δ P O Q = 1 2 ( O Q ) ( P Q ) \Delta POQ = \frac{1}{2}(OQ)(PQ)

Δ P O Q = a b ( a 2 b 2 ) 2 ( a 2 t a n θ + b 2 c o t θ ) \Delta POQ = \dfrac{ab(a^{2} - b^{2})}{2(a^{2}tanθ + b^{2}cotθ)}

It is easy to maximize this expression.

Δ P O Q m a x = a 2 b 2 4 \Delta POQ_{max} = \dfrac{a^{2} - b^{2}}{4}

Substitute the values to get Δ P O Q m a x = 20 \Delta POQ_{max} = 20

great one!!!

Joshika J - 4 years, 4 months ago
Laurent Shorts
Feb 19, 2017

Interesting fact: O Q OQ will always have slope 1 , and P P will always be the point where its tangent has slope 1 -1 .

x 2 a 2 + y 2 b 2 = 1 b 2 x 2 + a 2 y 2 = a 2 b 2 \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 ~ \Longleftrightarrow ~ b^2x^2+a^2y^2=a^2b^2

Let P = ( a cos θ ; b sin θ ) P=(a\cos\theta; b\sin\theta) , so that in polar coordinates, P = ( r cos ϕ ; r sin ϕ ) P=(r\cos\phi; r\sin\phi) with r 2 = a 2 cos 2 θ + b 2 sin 2 θ r^2=a^2\cos^2\theta+b^2\sin^2\theta and tan ϕ = b sin θ a cos θ \tan\phi=\frac{b\sin\theta}{a\cos\theta} , so that r 2 = 1 + b 2 tan 2 θ 1 + tan 2 θ and tan ϕ = b a tan θ \boxed{~r^2=\dfrac{1+b^2\tan^2\theta}{1+\tan^2\theta}~}\text{ and   }\boxed{\tan\phi=\dfrac{b}{a}\tan\theta~}

Slope of tangent is given by y y' . b 2 x 2 + a 2 y 2 = a 2 b 2 ( b 2 x 2 + a 2 y 2 ) = ( a 2 b 2 ) 2 b 2 x + 2 a 2 y y = 0 y = b 2 x a 2 y b^2x^2+a^2y^2=a^2b^2\implies(b^2x^2+a^2y^2)'=(a^2b^2)'\Leftrightarrow 2b^2x+2a^2y·y'=0 \Leftrightarrow y'=\dfrac{-b^2x}{a^2y} .

Slope of perpendicular O Q OQ is 1 y = a 2 y b 2 x = a 2 b sin θ b 2 a cos θ \dfrac{-1}{y'}=\dfrac{a^2y}{b^2x}=\dfrac{a^2b\sin\theta}{b^2a\cos\theta} , but this slope is tan α \tan\alpha : tan α = a b tan θ \tan\alpha=\frac{a}{b}\tan\theta , and so we have: tan θ = b a tan α , tan ϕ = b 2 a 2 tan α and r 2 = a 4 + b 4 tan 2 α a 2 + b 2 tan 2 α \boxed{\tan\theta=\dfrac{b}{a}\tan\alpha~}\text{ , }\boxed{\tan\phi=\dfrac{b^2}{a^2}\tan\alpha~}\text{ and }\boxed{~r^2=\dfrac{a^4+b^4\tan^2\alpha}{a^2+b^2\tan^2\alpha}~}

Now, tan β = tan α ϕ = tan α tan ϕ 1 + tan α tan ϕ \tan\beta=\tan{\alpha-\phi}=\dfrac{\tan\alpha-\tan\phi}{1+\tan\alpha\tan\phi} : tan β = ( a 2 b 2 ) tan α a 2 + b 2 tan 2 α \boxed{\tan\beta=\dfrac{(a^2-b^2)\tan\alpha}{a^2+b^2\tan^2\alpha}}

O Q = r 1 + tan 2 β OQ=\frac{r}{\sqrt{1+\tan^2\beta}} and P Q = r tan β 1 + tan 2 β PQ=\frac{r\tan\beta}{\sqrt{1+\tan^2\beta}} , so searched area is A = 1 2 O Q P Q = 1 2 r 2 tan β 1 + tan 2 β = 1 2 r 2 ( a 2 b 2 ) tan α ( a 2 + b 2 tan 2 α ) ( a 2 + b 2 tan 2 α ) 2 + ( a 2 b 2 ) 2 tan 2 α = 1 2 r 2 ( a 2 b 2 ) tan α ( a 2 + b 2 tan 2 α ) ( a 4 + b 4 tan 2 α ) ( 1 + tan 2 α ) = 1 2 ( a 2 b 2 ) tan α 1 + tan 2 α \begin{aligned}A&=\frac{1}{2}OQ·PQ=\frac{1}{2}·\dfrac{r^2\tan\beta}{1+\tan^2\beta}=\frac{1}{2}·\dfrac{r^2(a^2-b^2)\tan\alpha~(a^2+b^2\tan^2\alpha)}{(a^2+b^2\tan^2\alpha)^2+(a^2-b^2)^2\tan^2\alpha}\\&=\frac{1}{2}·\dfrac{r^2(a^2-b^2)\tan\alpha~(a^2+b^2\tan^2\alpha)}{(a^4+b^4\tan^2\alpha)(1+\tan^2\alpha)}=\frac{1}{2}·\dfrac{(a^2-b^2)\tan\alpha}{1+\tan^2\alpha}\end{aligned}

A = a 2 b 2 2 sin α cos α \boxed{~A=\dfrac{a^2-b^2}{2}·\sin\alpha\cos\alpha~} A is maximal when α = π 4 \boxed{\boxed{~A\text{ is maximal when }\alpha=\frac\pi4~}} A m a x = a 2 b 2 4 \boxed{\boxed{~A_{max}=\dfrac{a^2-b^2}{4}~}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...