Maximum area of triangle on a curve

Geometry Level 3

What is the maximum area of an equilateral triangle whose vertices are on the curve x 3 + 3 x y + y 3 = 1 ? x^3+3xy+y^3=1?

2 2 3 \displaystyle\frac{2\sqrt{2}}{3} 3 2 2 \displaystyle\frac{3\sqrt{2}}{2} 3 2 \displaystyle\frac{\sqrt{3}}{2} 3 \sqrt{3} 3 3 2 \displaystyle\frac{3\sqrt{3}}{2} The curve is a straight line, so such a triangle does not exist

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zico Quintina
May 9, 2018

To tackle this one, we first "complete the cube" on the left side:

x 3 + 3 x 2 y + 3 x y 2 + y 3 = 3 x 2 y + 3 x y 2 3 x y + 1 ( x + y ) 3 1 = 3 x 2 y + 3 x y 2 3 x y ( x + y 1 ) [ ( x + y ) 2 + ( x + y ) + 1 ] = 3 x y ( x + y 1 ) ( x + y 1 ) ( x 2 x y + y 2 + x + y + 1 ) = 0 [Now multiply both sides by 2 ] ( x + y 1 ) ( 2 x 2 2 x y + 2 y 2 + 2 x + 2 y + 2 ) = 0 ( x + y 1 ) ( x 2 2 x y + y 2 + x 2 + 2 x + 1 + y 2 + 2 y + 1 ) = 0 ( x + y 1 ) [ ( x y ) 2 + ( x + 1 ) 2 + ( y + 1 ) 2 ] = 0 \begin{aligned} x^3 + 3x^2y + 3xy^2 + y^3 &= 3x^2y + 3xy^2 - 3xy +1 \\ (x+y)^3 -1 &= 3x^2y + 3xy^2 - 3xy \\ (x + y - 1) \left[ (x + y)^2 + (x + y) + 1 \right] &= 3xy \ (x + y - 1) \\ (x + y - 1) (x^2 - xy + y^2 + x + y + 1) &= 0 \qquad \qquad \small \color{#3D99F6} \text{[Now multiply both sides by }2] \\ (x + y - 1) (2x^2 - 2xy + 2y^2 + 2x + 2y + 2) &= 0 \\ (x + y - 1) (x^2 - 2xy + y^2 + x^2 + 2x + 1 + y^2 + 2y + 1) &= 0 \\ (x + y - 1) \left[ (x - y)^2 + (x + 1)^2 + (y + 1)^2 \right] &= 0 \end{aligned}

so either ( x + y 1 ) = 0 (x + y - 1) = 0 or x = y = - 1 x = y = \text{-} 1 . Thus the graph of x 3 + 3 x y + y 3 = 1 x^3 + 3xy + y^3 = 1 consists of the line x + y = 1 x + y = 1 plus the point ( - 1 , - 1 ) (\text{-}1,\text{-}1) , so there's a single equilateral triangle whose vertices all touch the graph.

Finally, from the graph, the distance from ( - 1 , - 1 ) (\text{-}1,\text{-}1) to the line x + y + 1 x + y + 1 is easily seen to be 3 2 2 \dfrac{3\sqrt{2}}{2} , and this would be the height h h of the equilateral triangle in question. Then its area A A is

A = 3 3 h 2 = 3 3 ( 3 2 2 ) 2 = 3 3 9 2 = 3 3 2 A = \dfrac{\sqrt{3}}{3}h^2 = \dfrac{\sqrt{3}}{3} \left( \dfrac{3\sqrt{2}}{2} \right)^2 = \dfrac{\sqrt{3}}{3} \cdot \dfrac{9}{2} = \boxed{ \dfrac{3\sqrt{3}}{2} }

Daniel Xiang
May 8, 2018

By factorisation

x 3 + 3 x y + y 3 1 = 1 2 ( x + y 1 ) ( ( x y ) 2 + ( y + 1 ) 2 + ( x + 1 ) 2 ) ) x^3+3xy+y^3-1=\frac{1}{2}(x+y-1)((x-y)^2+(y+1)^2+(x+1)^2))

Therefore the set of points on the curve x 3 + 3 x y + y 3 = 1 x^3+3xy+y^3=1 is the union of ( 1 , 1 ) (-1, -1) and the curve y = x + 1 y=-x+1

This means that there is a unique equilateral triangle whose vertices are on the curve, and ( 1 , 1 ) (-1, -1) must be one of its vertices.

We can now easily compute the area of this triangle, which turns out to be 3 3 2 \displaystyle\frac{3\sqrt{3}}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...