Maximum area triangle

Geometry Level pending

Point A A lies on circle x 2 + y 2 = 38 5 2 x^2+y^2=385^2 , point B B lies on circle x 2 + y 2 = 11 9 2 x^2+y^2=119^2 and C C lies on circle x 2 + y 2 = 6 5 2 x^2+y^2=65^2 . Find maximum area of triangle A B C ABC .


The answer is 36288.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let the center of the three circles be O O and the radius A O = a = 385 AO=a=385 , B O = b = 119 BO=b=119 , and C O = c = 65 CO=c=65 , and the central angle opposite the respective radii be α \alpha , β \beta , and γ \gamma . Then the area of A B C \triangle ABC is given by:

A = 1 2 a b sin γ + 1 2 b c sin α + 1 2 c a sin β Since γ = 2 π α β 2 A = a b sin ( α + β ) + b c sin α + c a sin β \begin{aligned} A & = \frac 12 ab \sin \gamma + \frac 12 bc \sin \alpha + \frac 12 ca \sin \beta & \small \blue{\text{Since } \gamma = 2\pi - \alpha - \beta} \\ 2A & = -ab\sin (\alpha + \beta) + bc \sin \alpha + ca \sin \beta \end{aligned}

A A is maximum when A α = 0 \dfrac {\partial A}{\partial \alpha} = 0 and A β = 0 \dfrac {\partial A}{\partial \beta} = 0 . { 2 A α = a b cos ( α + β ) + b c cos α 2 A β = a b cos ( α + β ) + c a cos β \begin{cases} 2 \dfrac {\partial A}{\partial \alpha} = -ab\cos (\alpha + \beta) + bc \cos \alpha \\ 2 \dfrac {\partial A}{\partial \beta} = -ab\cos (\alpha + \beta) + ca \cos \beta \end{cases} .

Equating to zero, we have b c cos α = c a cos β = a b cos ( α + β ) = a b cos γ bc \cos \alpha = ca \cos \beta = ab \cos (\alpha + \beta) = ab \cos \gamma cos α a = cos β b = cos γ c \implies \dfrac {\cos \alpha}a = \dfrac {\cos \beta}b = \dfrac {\cos \gamma}c .

From c cos α = a cos ( α + β ) c \cos \alpha = a\cos (\alpha + \beta) , we have 2 b c cos 3 α ( a 2 + b 2 + c 2 ) cos α + a 2 = 0 2bc \cos^3 \alpha - (a^2+b^2+c^2) \cos \alpha + a^2 = 0 . Solving the equation, we have

{ cos α = 77 85 sin α = 36 85 cos β = 7 25 sin β = 24 25 cos γ = 13 85 sin γ = 84 85 \begin{cases} \cos \alpha = - \dfrac {77}{85} & \implies \sin \alpha = \dfrac {36}{85} \\ \cos \beta = - \dfrac 7{25} & \implies \sin \beta = \dfrac {24}{25} \\ \cos \gamma = - \dfrac {13}{85} & \implies \sin \gamma = \dfrac {84}{85} \end{cases}

And the maximum area of A B C \triangle ABC , A max = 1 2 ( 119 × 65 × 36 85 + 65 × 385 × 24 25 + 385 × 119 × 84 85 ) = 36288 A_{\max} = \dfrac 12 \left(119 \times 65 \times \dfrac {36}{85} + 65 \times 385 \times \dfrac {24}{25} + 385 \times 119 \times \dfrac {84}{85} \right) = \boxed{36288} .

Fine. Thanks for attention. Nice fact exist here - (0,0) - is ortocenter ABC.

Yuriy Kazakov - 1 year, 1 month ago

Log in to reply

Oh, I see. Thanks comrade.

Chew-Seong Cheong - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...