Maximum Area with A Given Perimeter

Geometry Level 3

The perimeter of Δ A B C \Delta ABC is 2017 2017 units.

Its maximum area is a b c \dfrac{a}{b \sqrt{c}} unit 2 ^2 , where a a is coprime to b b , and c c is square-free.

Find ( a + b + c ) (a+b+c) .


The answer is 4068304.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let p p , q q and r r denote the sides of Δ A B C \Delta ABC , and 2 s = ( p + q + r ) 2s=(p+q+r) denote the perimeter, Δ \Delta denote the area.

By AM-GM inequality, we have,

( s p ) + ( s q ) + ( s r ) 3 ( s p ) ( s q ) ( s r ) 3 \dfrac{(s-p)+(s-q)+(s-r)}{3} \geq \sqrt[3]{(s-p)(s-q)(s-r)} [With equality holds only when s p = s q = s r s-p=s-q=s-r , or p = q = r p = q = r ]

s 3 ( s p ) ( s q ) ( s r ) 3 \Leftrightarrow \dfrac{s}{3} \geq \sqrt[3]{(s-p)(s-q)(s-r)}

s 3 27 ( s p ) ( s q ) ( s r ) \Leftrightarrow \dfrac{s^3}{27} \geq (s-p)(s-q)(s-r)

s 4 27 s ( s p ) ( s q ) ( s r ) \Leftrightarrow \dfrac{s^4}{27} \geq s(s-p)(s-q)(s-r)

s 2 3 3 s ( s p ) ( s q ) ( s r ) \Leftrightarrow \dfrac{s^2}{3\sqrt{3}} \geq \sqrt{ s(s-p)(s-q)(s-r)} [Taking square root on both sides]

s 2 3 3 Δ \Leftrightarrow \dfrac{s^2}{3\sqrt{3}} \geq \Delta

Δ m a x = s 2 3 3 \implies \Delta_{max} = \dfrac{s^2}{3\sqrt{3}} [This maximum occurs when p = q = r p=q=r , or the triangle is equilateral]

Δ m a x = ( 2 s ) 2 4 × 3 3 = ( 2 s ) 2 12 3 = 201 7 2 12 3 \implies \Delta_{max} = \dfrac{(2s)^2}{4\times 3\sqrt{3}} = \dfrac{(2s)^2}{12\sqrt{3}} = \dfrac{2017^2}{12\sqrt{3}} .

Now, 201 7 2 2017^2 and 12 12 are coprime to each other; 3 3 is square-free. So, a = 201 7 2 a=2017^2 , b = 12 b=12 and c = 3 c=3 .

Therefore, ( a + b + c ) = 201 7 2 + 12 + 3 = 4068304 . (a+b+c)=2017^2+12+3=\boxed{4068304}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...