Maximum height

A ball is thrown from a point 1 m above the ground. The initial velocity is 20 m/s at an angle of 40 degrees above the horizontal.Find the maximum height of the ball above the ground.


The answer is 9.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ahmed Hassaneen
May 23, 2014

Height is max , when Vy = 0 , Vy =Voy-gt=0 , t= (Voy)/g = 1.3118 sec
h-ho=(Voy)(t)-0.5gt^2 ==> h =1+ (VoSin(40))(1.3118)- 0.5(9.8)(1.3118)^2= 9.432 meters.

A t t h e m a x i m u m h e i g h t v e r t i c a l v e l o c i t y i s 0. L a u n c h e d f r o m 1 m a b o v e g r o u n d , t h e r e f o r e x = S + 1. R e s o l v i n g v e r t i c a l l y : S = ? U = 20 s i n 40 V = 0 A = g ( 9.8 ) T = ? V 2 = U 2 + 2 A S 0 = ( 20 s i n 40 ) 2 + 2 ( 9.8 ) ( S ) S = ( 20 s i n 40 ) 2 19.6 = 8.432 m A s x = S + 1 = 9.432 At\quad the\quad maximum\quad height\quad vertical\quad velocity\quad is\quad 0.\\ Launched\quad from\quad 1m\quad above\quad ground,\\ therefore\quad x=\quad S\quad +\quad 1.\\ Resolving\quad vertically:\\ \\ S\quad =\quad ?\\ U\quad =\quad 20sin40\\ V\quad =\quad 0\\ A\quad =\quad -g\quad (-9.8)\\ T\quad =\quad ?\\ \\ { V }^{ 2 }\quad =\quad { U }^{ 2 }\quad +\quad 2AS\\ 0\quad =\quad ({ 20sin40 })^{ 2 }\quad +\quad 2(-9.8)(S)\\ S\quad =\quad \frac { { (20sin40) }^{ 2 } }{ 19.6 } \quad =\quad 8.432m\\ \\ As\quad x\quad =\quad S+1\quad =\quad 9.432\\

Jake Sopher - 6 years, 8 months ago
Zineb Moumen
May 24, 2014

Vy(t) = -gt+Voy .. when height is max velocity is null ==> t=(Voy/g)=1, 28 s Y (t) = -(g/2) t^2 + Voy t + h ... ( h=1m) Ym= 9, 43 m

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...