x , y and z are positive reals. What is the maximum value of
( x 2 + y 2 + z 2 ) 3 − x 6 − y 6 − z 6 ( ( x + y + z ) 3 − x 3 − y 3 − z 3 ) 2 ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Which inequality tells us that ( a 2 + b 2 ) ( a + b ) 2 ≤ 2 ?
Also, is there another way to arrive at the factorization?
Log in to reply
a 2 + b 2 ≥ 2 a b 2 ( a 2 + b 2 ) ≥ a 2 + b 2 + 2 a b 2 ( a 2 + b 2 ) ≥ ( a + b ) 2 2 ≥ ( a 2 + b 2 ) ( a + b ) 2 ∴ ( a 2 + b 2 ) ( a + b ) 2 ≤ 2
For a 1 , a 2 , a 3 . . . , a n ,
We have n a 1 + a 2 + a 3 . . . + a n ≤ n a 1 2 + a 2 2 + a 3 2 . . . + a n 2 , By AM-QM
Multiplying by n, we get: a 1 + a 2 + a 3 . . . + a n ≤ ( a 1 2 + a 2 2 + a 3 2 . . . + a n 2 ) × n ,
Squaring, we have: ( a 1 + a 2 + a 3 . . . + a n ) 2 ≤ ( a 1 2 + a 2 2 + a 3 2 . . . + a n 2 ) × n ,
Thus ( a 1 2 + a 2 2 + a 3 2 . . . + a n 2 ) ( a 1 + a 2 + a 3 . . . + a n ) 2 ≤ n , true for a 1 = a 2 = a 3 . . . = a n
Let
a 1 = a 2 = a 3 = x 2 y ,
a 4 = a 5 = a 6 = x 2 z ,
a 7 = a 8 = a 9 = y 2 x ,
a 1 0 = a 1 1 = a 1 2 = y 2 z ,
a 1 3 = a 1 4 = a 1 5 = z 2 z ,
a 1 6 = a 1 7 = a 1 8 = z 2 z ,
a 1 9 = a 2 0 = a 2 1 = a 2 2 = a 2 3 = a 2 4 = x y z ,
By evaluating, we see
( ( x + y + z ) 3 − x 3 − y 3 − z 3 ) 2 = ( a 1 + a 2 + a 3 . . . + a 2 4 ) 2
( ( x 2 + y 2 + z 2 ) 3 − x 6 − y 6 − z 6 ) 2 = a 1 2 + a 2 2 + a 3 2 . . . + a 2 4 2
Thus ( ( x 2 + y 2 + z 2 ) 3 − x 6 − y 6 − z 6 ) 2 ( ( x + y + z ) 3 − x 3 − y 3 − z 3 ) 2 = ( a 1 2 + a 2 2 + a 3 2 . . . + a 2 4 2 ) ( a 1 + a 2 + a 3 . . . + a 2 4 ) 2 ≤ 2 4
We shall now show this is possible. Setting x=y=z=1,
( ( x 2 + y 2 + z 2 ) 3 − x 6 − y 6 − z 6 ) 2 ( ( x + y + z ) 3 − x 3 − y 3 − z 3 ) 2 = ( ( 1 2 + 1 2 + 1 2 ) 3 − 1 6 − 1 6 − 1 6 ) 2 ( ( 1 + 1 + 1 ) 3 − 1 3 − 1 3 − 1 3 ) 2 = 2 4 2 4 2 = 2 4
Every term in ( x + y + z ) 3 − x 3 − y 3 − z 3 has its square in ( x 2 + y 2 + z 2 ) 3 − x 6 − y 6 − z 6 , so by Cauchy–Schwarz inequality we get ( ( x 2 + y 2 + z 2 ) 3 − x 6 − y 6 − z 6 ) ( 2 4 ) ≥ ( ( x + y + z ) 3 − x 3 − y 3 − z 3 ) 2 , with equality reached if and only if x = y = z .
From big's theoreme number 1 x=y=z=1 so the answer is 24²:24 = 24
:V
What theorem is that?
Note that it is not always true that max/min occurs when all variables are equal. See inequalities with strange equality conditions .
I just kidding... I know the real solution @Calvin Lin
Assuming the value will be maximized when x=y=z, we can substitute x for y and z and create the new fraction ( 3 x 2 ) 3 − 3 x 6 ( ( 3 x ) 3 − 3 x 3 ) 2 which simplifies to 2 4 x 6 ( 2 4 x 3 ) 2 or 2 4 x 6 2 4 2 x 6 which finally simplifies to 24.
The maximum possible values of the expression will be attained when all the three variables x,y and z are equal. In that case the expression will become, {(3x)^3 -3x^3}^2 /(3x^2 )^3 -3 x^6 = 24
Problem Loading...
Note Loading...
Set Loading...
We know that a 3 + b 3 = ( a + b ) ( a 2 + b 2 − a b ) . So, = = = ( a + b + c ) 3 − a 3 − b 3 − c 3 ( b + c ) ( a 2 + b 2 + c 2 + 2 a b + 2 b c + 2 a c + a 2 + a 2 + a b + a c ) − ( b + c ) ( b 2 − c 2 + b c ) ( b + c ) ( 3 a 2 + 3 a b + 3 b c + 3 a c ) 3 ( a + b ) ( b + c ) ( a + c ) Then the expression in the equation becomes 3 × ( a 2 + b 2 ) ( b 2 + c 2 ) ( a 2 + c 2 ) ( a + b ) 2 ( b + c ) 2 ( a + c ) 2 . Now we note that ( a 2 + b 2 ) ( a + b ) 2 ≤ 2 , which shows that the expression is less than or equal to 3 × 2 × 2 × 2 = 2 4 .