Maximum of a Big Fraction

Algebra Level 5

x , y x, y and z z are positive reals. What is the maximum value of

( ( x + y + z ) 3 x 3 y 3 z 3 ) 2 ( x 2 + y 2 + z 2 ) 3 x 6 y 6 z 6 ? \frac { \big( (x+y+z)^3 - x^3-y^3-z^3 \big)^2} {(x^2+y^2+z^2)^3 -x^6-y^6-z^6} ?


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Anurag Anshu
May 20, 2014

We know that a 3 + b 3 = ( a + b ) ( a 2 + b 2 a b ) a^3 + b^3 = (a+b)(a^2 + b^2 -ab) . So, ( a + b + c ) 3 a 3 b 3 c 3 = ( b + c ) ( a 2 + b 2 + c 2 + 2 a b + 2 b c + 2 a c + a 2 + a 2 + a b + a c ) ( b + c ) ( b 2 c 2 + b c ) = ( b + c ) ( 3 a 2 + 3 a b + 3 b c + 3 a c ) = 3 ( a + b ) ( b + c ) ( a + c ) \begin{aligned} & (a+b+c)^3 - a^3 - b^3 - c^3 \\ = & (b+c)(a^2+b^2+c^2+2ab+2bc+2ac + a^2 +a^2+ab+ac) -(b+c) (b^2 - c^2 +bc)\\ = & (b+c)(3a^2 + 3ab + 3bc + 3ac) \\ = & 3(a+b)(b+c)(a+c)\\ \end{aligned} Then the expression in the equation becomes 3 × ( a + b ) 2 ( b + c ) 2 ( a + c ) 2 ( a 2 + b 2 ) ( b 2 + c 2 ) ( a 2 + c 2 ) 3\times \frac{(a+b)^2(b+c)^2(a+c)^2}{(a^2+b^2)(b^2+c^2)(a^2+c^2)} . Now we note that ( a + b ) 2 ( a 2 + b 2 ) 2 \frac {(a+b)^2}{(a^2+b^2)} \leq 2 , which shows that the expression is less than or equal to 3 × 2 × 2 × 2 = 24 3\times 2\times 2\times 2 = 24 .

Which inequality tells us that ( a + b ) 2 ( a 2 + b 2 ) 2 \frac {(a+b)^2}{(a^2+b^2)} \leq 2 ?

Also, is there another way to arrive at the factorization?

Calvin Lin Staff - 7 years ago

Log in to reply

a 2 + b 2 2 a b 2 ( a 2 + b 2 ) a 2 + b 2 + 2 a b 2 ( a 2 + b 2 ) ( a + b ) 2 2 ( a + b ) 2 ( a 2 + b 2 ) ( a + b ) 2 ( a 2 + b 2 ) 2 { a }^{ 2 }+{ b }^{ 2 }\ge 2ab\\ 2({ a }^{ 2 }+{ b }^{ 2 })\ge { a }^{ 2 }+{ b }^{ 2 }+2ab\\ 2({ a }^{ 2 }+{ b }^{ 2 })\ge { (a+b) }^{ 2 }\\ 2\ge \frac { { (a+b) }^{ 2 } }{ ({ a }^{ 2 }+{ b }^{ 2 }) } \\ \therefore \frac { { (a+b) }^{ 2 } }{ ({ a }^{ 2 }+{ b }^{ 2 }) } \le 2

Surya Prakash - 6 years, 5 months ago
Clarence Chew
May 20, 2014

For a 1 , a 2 , a 3 . . . , a n a_1, a_2, a_3..., a_n ,

We have a 1 + a 2 + a 3 . . . + a n n a 1 2 + a 2 2 + a 3 2 . . . + a n 2 n \frac{a_1+a_2+a_3...+a_n}{n}\leq\sqrt{\frac{a_1^2+a_2^2+a_3^2...+a_n^2}{n}} , By AM-QM

Multiplying by n, we get: a 1 + a 2 + a 3 . . . + a n ( a 1 2 + a 2 2 + a 3 2 . . . + a n 2 ) × n a_1+a_2+a_3...+a_n \leq \sqrt{(a_1^2+a_2^2+a_3^2...+a_n^2) \times n} ,

Squaring, we have: ( a 1 + a 2 + a 3 . . . + a n ) 2 ( a 1 2 + a 2 2 + a 3 2 . . . + a n 2 ) × n (a_1+a_2+a_3...+a_n)^2 \leq (a_1^2+a_2^2+a_3^2...+a_n^2) \times n ,

Thus ( a 1 + a 2 + a 3 . . . + a n ) 2 ( a 1 2 + a 2 2 + a 3 2 . . . + a n 2 ) n \frac{(a_1+a_2+a_3...+a_n)^2}{(a_1^2+a_2^2+a_3^2...+a_n^2)} \leq n , true for a 1 = a 2 = a 3 . . . = a n a_1=a_2=a_3...=a_n

Let

a 1 = a 2 = a 3 = x 2 y a_1=a_2=a_3=x^2y ,

a 4 = a 5 = a 6 = x 2 z a_4=a_5=a_6=x^2z ,

a 7 = a 8 = a 9 = y 2 x a_7=a_8=a_9=y^2x ,

a 10 = a 11 = a 12 = y 2 z a_{10}=a_{11}=a_{12}=y^2z ,

a 13 = a 14 = a 15 = z 2 z a_{13}=a_{14}=a_{15}=z^2z ,

a 16 = a 17 = a 18 = z 2 z a_{16}=a_{17}=a_{18}=z^2z ,

a 19 = a 20 = a 21 = a 22 = a 23 = a 24 = x y z a_{19}=a_{20}=a_{21}=a_{22}=a_{23}=a_{24}=xyz ,

By evaluating, we see

( ( x + y + z ) 3 x 3 y 3 z 3 ) 2 = ( a 1 + a 2 + a 3 . . . + a 24 ) 2 ((x+y+z)^3-x^3-y^3-z^3)^2=(a_1+a_2+a_3...+a_{24})^2

( ( x 2 + y 2 + z 2 ) 3 x 6 y 6 z 6 ) 2 = a 1 2 + a 2 2 + a 3 2 . . . + a 24 2 ((x^2+y^2+z^2)^3-x^6-y^6-z^6)^2=a_1^2+a_2^2+a_3^2...+a_{24}^2

Thus ( ( x + y + z ) 3 x 3 y 3 z 3 ) 2 ( ( x 2 + y 2 + z 2 ) 3 x 6 y 6 z 6 ) 2 = ( a 1 + a 2 + a 3 . . . + a 24 ) 2 ( a 1 2 + a 2 2 + a 3 2 . . . + a 24 2 ) 24 \frac{((x+y+z)^3-x^3-y^3-z^3)^2}{((x^2+y^2+z^2)^3-x^6-y^6-z^6)^2}= \frac{(a_1+a_2+a_3...+a_{24})^2}{(a_1^2+a_2^2+a_3^2...+a_{24}^2)} \leq 24

We shall now show this is possible. Setting x=y=z=1,

( ( x + y + z ) 3 x 3 y 3 z 3 ) 2 ( ( x 2 + y 2 + z 2 ) 3 x 6 y 6 z 6 ) 2 = ( ( 1 + 1 + 1 ) 3 1 3 1 3 1 3 ) 2 ( ( 1 2 + 1 2 + 1 2 ) 3 1 6 1 6 1 6 ) 2 = 2 4 2 24 = 24 \frac{((x+y+z)^3-x^3-y^3-z^3)^2}{((x^2+y^2+z^2)^3-x^6-y^6-z^6)^2}=\frac{((1+1+1)^3-1^3-1^3-1^3)^2}{((1^2+1^2+1^2)^3-1^6-1^6-1^6)^2}=\frac{24^2}{24}=24

Si Wei How
May 20, 2014

Every term in ( x + y + z ) 3 x 3 y 3 z 3 (x+y+z)^3-x^3 -y^3-z^3 has its square in ( x 2 + y 2 + z 2 ) 3 x 6 y 6 z 6 (x^2+y^2+z^2)^3-x^6 -y^6-z^6 , so by Cauchy–Schwarz inequality we get ( ( x 2 + y 2 + z 2 ) 3 x 6 y 6 z 6 ) ( 24 ) ( ( x + y + z ) 3 x 3 y 3 z 3 ) 2 ((x^2+y^2+z^2)^3-x^6 -y^6-z^6)(24) \geq ((x+y+z)^3-x^3 -y^3-z^3)^2 , with equality reached if and only if x = y = z x=y=z .

What is wrong with this solution?

Calvin Lin Staff - 7 years ago

From big's theoreme number 1 x=y=z=1 so the answer is 24²:24 = 24

:V

What theorem is that?

Note that it is not always true that max/min occurs when all variables are equal. See inequalities with strange equality conditions .

Calvin Lin Staff - 4 years, 7 months ago

I just kidding... I know the real solution @Calvin Lin

I Gede Arya Raditya Parameswara - 4 years, 7 months ago
Aaron Schark
May 20, 2014

Assuming the value will be maximized when x=y=z, we can substitute x for y and z and create the new fraction ( ( 3 x ) 3 3 x 3 ) 2 ( 3 x 2 ) 3 3 x 6 \frac{((3x)^{3}-3x^{3})^{2}}{(3x^{2})^{3}-3x^{6}} which simplifies to ( 24 x 3 ) 2 24 x 6 \frac{(24x^{3})^{2}}{24x^{6}} or 2 4 2 x 6 24 x 6 \frac{24^{2}x^{6}}{24x^{6}} which finally simplifies to 24.

Rattan Bala
May 20, 2014

The maximum possible values of the expression will be attained when all the three variables x,y and z are equal. In that case the expression will become, {(3x)^3 -3x^3}^2 /(3x^2 )^3 -3 x^6 = 24

Reynan Henry
Apr 11, 2014

Use holders inequality

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...