Maximum of a Linear Function subject to Linear and Quadratic Constraints in R 4 \mathbb{R}^4

Calculus Level 5

Let x = [ x 1 , x 2 , x 3 , x 4 ] T \mathbf{x} = [ x_1, x_2, x_3, x_4 ]^T be a vector in R 4 \mathbb{R}^4 , and let f ( x ) = 2 x 1 3 x 2 + 5 x 3 + 4 x 4 f( \mathbf{x} ) = 2 x_1 - 3 x_2 + 5 x_3 + 4 x_4 be the objective function to be maximized over R 4 \mathbb{R}^4 , subject to the linear constraint, x 1 + 2 x 2 x 3 + 3 x 4 = 10 x_1 + 2 x_2 - x_3 + 3 x_4 = 10 , and the quadratic constraint, x 1 2 + 2 x 2 2 + 3 x 3 2 + 4 x 4 2 + 2 x 1 + x 2 + 4 x 3 + x 4 = 100 x_1^2 + 2 x_2^2 + 3 x_3^2 + 4 x_4^2 + 2 x_1 + x_2 + 4 x_3 + x_4 = 100 .

If ( a , b , c , d ) (a, b, c, d) is the point in R 4 \mathbb{R}^4 at which the function f f attains its maximum and, if the value of that maximum is f f^* , then find a + b + c + d + f a + b + c + d + f^* . Round your answer to 3 decimal places.


The answer is 45.132.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hosam Hajjir
Feb 22, 2017

The problem can be restated as follows:

Find the maximum of f ( x ) = c T x f(\mathbf{x}) = \mathbf{c^T x} , subject to the constraints

a T x = b \mathbf{a^T x} = b , and x T Q x + e T x = R 2 \mathbf{ x^T Q x + e^T x }= R^2 .

Where, in this problem,

c T = [ 2 , 3 , 5 , 4 ] \mathbf{c^T} = [2, -3, 5, 4]

a T = [ 1 , 2 , 1 , 3 ] \mathbf{a^T} = [1, 2,-1,3]

b = 10 b = 10

Q = [ 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 ] \mathbf{Q} = \begin{bmatrix} 1 && 0 && 0 && 0 \\ 0 && 2 && 0 && 0 \\ 0 && 0 && 3 && 0 \\ 0 && 0 && 0 && 4 \end{bmatrix}

e T = [ 2 , 1 , 4 , 1 ] \mathbf{e^T} = [2, 1, 4, 1]

R = 10 R = 10

Starting with the linear constraint, a T x = b \mathbf{a^T x} = b is an equation of a hyperplane in R n \mathbb{R}^n whose vector equation is

x = V u + x 0 \mathbf{x = V u + x_0} , u R n 1 \mathbf{u} \in \mathbb{R}^{n-1}

Upon substituting this into the quadratic constraint, we obtain

( V u + x 0 ) T Q ( V u + x 0 ) + e T ( V u + x 0 ) = R 2 \mathbf{(V u + x_0)^T Q (V u + x_0) + e^T (V u + x_0)} = R^2

Expanding,

u T V T Q V u + 2 u T V T Q x 0 + u T V T e = R 2 x 0 T Q x 0 e T x 0 \mathbf{u^T V^T Q V u + 2 u^T V^T Q x_0 + u^T V^T e} = R^2 - \mathbf{x_0^T Q x_0 - e^T x_0}

Next, let u 0 = ( V T Q V ) 1 ( V T Q x 0 + 1 / 2 V T e ) \mathbf{u_0 = - (V^T Q V)^{-1} (V^T Q x_0 + 1/2 V^T e) } , then

( u u 0 ) T ( V T Q V ) ( u u 0 ) = r 2 ( 1 ) \large{ \mathbf{(u - u_0)^T (V^T Q V) (u - u0)} = r^2 } \cdots \cdots (1)

where r 2 = R 2 x 0 T Q x 0 e T x 0 + u 0 T ( V T Q V ) u 0 r^2 = R^2 - \mathbf{x_0^T Q x_0 - e^T x_0 + u_0^T (V^T Q V) u_0 }

Equation (1) specifies a ellipsoid in R n 1 \mathbb{R}^{n-1} .

Now the objective function can be written in terms of u \mathbf{u} as

f = c T x = c T ( V u + x 0 ) = c T V u + c T x 0 f = \mathbf{cT x = c^T(V u + x_0) = c^T V u + c^T x_0 }

Using Lagrange's method, the function is maximum when its gradient is parallel to that of

the contraint specified in (1) , that is,

λ V T c = ( V T Q V ) ( u u 0 ) \lambda \mathbf{V^T c = (V^T Q V) (u - u_0) }

Solving for ( u u 0 ) \mathbf{ (u - u_0) } , we get,

u u 0 = λ ( V T Q V ) 1 V T c ( 2 ) \large{ \mathbf{u - u_0} = \lambda \mathbf{(V^T Q V)^{-1} V^T c} } \cdots \cdots (2)

Plugging this into equation (1), we get,

λ 2 c T V ( V T Q V ) 1 V T c = r 2 \lambda^2 \mathbf{c^T V (V^T Q V)^{-1} V^T c} = r^2

and therefore,

λ = r c T V ( V T Q V ) 1 V T c \large{ \lambda = \dfrac{r}{ \sqrt{ \mathbf{c^T V (V^T Q V)^{-1} V^T c} } } }

Thus, using equation (2), we can calculate u = u 0 + λ ( V T Q V ) 1 V T c \mathbf{u^*} = \mathbf{u_0 }+ \lambda \mathbf{(V^T Q V)^{-1} V^T c} ,

then calculate x = V u + x 0 \mathbf{x^*} = \mathbf{V u^* + x_0} , and finally, find f = c T x = c T V u + c T x 0 f^* = \mathbf{c^T x^*} = \mathbf{c^T V u^* + c^T x_0} .

Performing these operations for the given values specified in the problem, we obtain,

x = [ 4.811961 , 1.30077 , 1.971166 , 3.253581 ] T \mathbf{x^*} = [4.811961, -1.30077, 1.971166, 3.253581]^T , and f = 36.39638 f^* = 36.39638

The desired answer is the sum of these numbers and evaluates to 45.132 45.132

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...