Maximum of a Linear Function Subject to Linear-Quadratic Constraints

Calculus Level 5

Consider maximizing the linear function f ( x , y , z ) = 2 x 3 y + 5 z f(x,y,z) = 2 x - 3 y + 5 z subject to a linear constraint x + 2 y z = 10 x + 2 y - z = 10 and a quadratic constraint x 2 + y 2 + z 2 = 100 x^2 + y^2 + z^2 = 100 .

If ( x , y , z ) = ( a , b , c ) (x, y, z) = (a, b, c) is the point in space where the function f f attains its maximum with the given constraints, and f f^* is the value of that maximum, then find the value of a + 2 b + 3 c + f a+ 2 b +3 c + f^* .


The answer is 59.34.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Feb 21, 2017

Let us simplify this optimization problem by taking the linear constraint x + 2 y z = 10 z = x + 2 y 10 x + 2y - z = 10 \Rightarrow z = x + 2y - 10 and substituting it into f ( x , y , z ) f(x,y,z) to become g ( x , y ) = 2 x 3 y + 5 ( x + 2 y 10 ) = 7 x + 7 y 50 g(x,y) = 2x - 3y + 5(x + 2y - 10) = 7x + 7y -50 and h ( x , y ) = x 2 + y 2 + ( x + 2 y 10 ) 2 = 100. h(x,y) = x^2 + y^2 + (x + 2y -10)^2 = 100.

By taking Lagrange multipliers ( g = λ h \nabla g = \lambda \cdot \nabla h ), we now obtain:

7 = λ [ 2 x + 2 ( x + 2 y 10 ) 1 ] ; 7 = \lambda \cdot [2x + 2(x + 2y - 10) \cdot 1];

7 = λ [ 2 y + 2 ( x + 2 y 10 ) 2 ] ; 7 = \lambda \cdot [2y + 2(x + 2y - 10) \cdot 2];

or x + ( x + 2 y 10 ) = y + 2 ( x + 2 y 10 ) y = 10 3 . x + (x + 2y -10) = y + 2(x + 2y - 10) \Rightarrow y = \frac{10}{3}.

Now we solve for x in h ( x , 10 3 ) = x 2 + ( 10 3 ) 2 + [ x + 2 ( 10 3 ) 10 ] 2 = 100 ; h(x, \frac{10}{3}) = x^2 + (\frac{10}{3})^2 +[x +2(\frac{10}{3}) - 10]^2 = 100;

or x 2 + ( 10 3 ) 2 + ( x 10 3 ) 2 = 100 ; x^2 + (\frac{10}{3})^2 + (x - \frac{10}{3})^2 = 100;

or 2 x 2 20 3 x + 200 9 = 100 18 x 2 60 x 700 = 0 x = 60 ± 6 0 2 4 ( 18 ) ( 700 ) 36 x = 5 3 ( 1 ± 15 ) 2x^2 - \frac{20}{3}x + \frac{200}{9} = 100 \Rightarrow 18x^2 - 60x - 700 = 0 \Rightarrow x = \frac{60 \pm \sqrt{60^2 - 4(18)(-700)}}{36} \Rightarrow x = \frac{5}{3} \cdot (1 \pm \sqrt{15}) .

Since we wish to maximize g ( x , y ) , g(x,y), we only accept the larger root x = 5 3 ( 1 + 15 ) x = \frac{5}{3} \cdot (1 + \sqrt{15}) . We now solve for z = x + 2 y 10 = 5 3 ( 1 + 15 ) + 2 ( 10 3 ) 10 = 5 3 ( 1 + 15 ) z = x + 2y -10 = \frac{5}{3} \cdot (1 + \sqrt{15}) + 2(\frac{10}{3}) - 10 = \frac{5}{3} \cdot (-1 + \sqrt{15}) and for f ( x , y , z ) = 2 [ 5 3 ( 1 + 15 ] 3 ( 10 3 ) + 5 [ 5 3 ( 1 + 15 ) ] = 45 + 35 15 3 . f(x,y,z) = 2[\frac{5}{3} \cdot (1 + \sqrt{15}] - 3(\frac{10}{3}) + 5[ \frac{5}{3} \cdot (-1 + \sqrt{15})] = \frac{-45 + 35\sqrt{15}}{3}. Altogether, our final computation comes to:

x + 2 y + 3 z + f m a x = 5 3 ( 1 + 15 ) + 2 ( 10 3 ) + 3 [ 5 3 ( 1 + 15 ) ] + 45 + 35 15 3 = 55 15 35 3 . x + 2y + 3z + f_{max} = \frac{5}{3} \cdot (1 + \sqrt{15}) + 2(\frac{10}{3}) + 3[ \frac{5}{3} \cdot (-1 + \sqrt{15})] + \frac{-45 + 35\sqrt{15}}{3} = \boxed{\frac{55\sqrt{15} - 35}{3}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...