Maximum or Minimum?

Algebra Level 4

x y + y z + z x x 2 + y 2 + z 2 \large \dfrac{xy + yz + zx}{x^2 + y^2 + z^2}

Given that x , y x,y and z z are real numbers. Which of the following can't be equal to above expression?


Original Problem.
0 0 1 1 1 2 -\dfrac{1}{2} 1 2 \dfrac{1}{2} 2 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akhil Bansal
Nov 30, 2015

For maximum,
Not that ( x y ) 2 + ( y z ) 2 + ( z x ) 2 0 (x-y)^2 + (y-z)^2 + (z-x)^2 \geq 0 . Then
2 [ x 2 + y 2 + z 2 ( x y + y z + z x ) ] 0 \large \Rightarrow 2 \left[x^2 + y^2 +z^2 - (xy +yz +zx) \right] \geq 0 x 2 + y 2 + z 2 x y + y z + z x \large \Rightarrow x^2 + y^2 +z^2 \geq xy +yz +zx x y + y z + z x x 2 + y 2 + z 2 1 \large \Rightarrow \dfrac{xy +yz +zx}{x^2 + y^2 +z^2} \leq 1

For minimum,

Note that ( x + y + z ) 2 0 (x + y + z)^2 \ge 0 . Then x 2 + y 2 + z 2 + 2 x y + 2 x z + 2 y z 0 x^2 + y^2 + z^2 + 2xy + 2xz + 2yz \geq 0 2 ( x y + x z + y z ) ( x 2 + y 2 + z 2 ) \Rightarrow 2(xy + xz + yz) \geq -(x^2 + y^2 + z^2) x y + x z + y z x 2 + y 2 + z 2 1 2 \Rightarrow \dfrac{xy + xz + yz}{x^2 + y^2 + z^2} \geq -\frac{1}{2}

Moderator note:

For completeness, you should show that the other values can indeed be attained. Had you done that, you would have realized that we could not obtain -1 or -2.

(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx) x^2+y^2+z^2>=-2(xy+yz+zx) So (xy+yz+zx)/(x^2+y^2+z^2)>=(-1/2) So answer should be even -2

Pranav Rao - 5 years, 6 months ago

Log in to reply

The given expression is ( x + y + z ) 2 2 ( x 2 + y 2 + z 2 ) 1 2 1 2 \frac{(x+y+z)^2}{2(x^2+y^2+z^2)}-\frac{1}{2}\geq -\frac{1}{2} , so that the value cannot be 2 , 1 2,-1 or 2 -2 . This problem is flawed.

Otto Bretscher - 5 years, 6 months ago

Log in to reply

Yes, I got that Sir. Can you please report it..

Akhil Bansal - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...