Given the ellipse:
a 2 x 2 + b 2 y 2 = 1
Two points ( x 1 , y 1 ) and ( x 2 , y 2 ) are chosen on it. A parallelogram is drawn using the points ( x 1 , y 1 ) and ( x 2 , y 2 ) and ( − x 1 , − y 1 ) and ( − x 2 , − y 2 ) . What is the maximum area of this parallelogram ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Let the coordinates of the four vertices of the parallelogram be ( x 1 , y 1 ) , ( x 2 , − y 2 ) , ( − x 1 , − y 1 ) and ( − x 2 , y 2 ) , so that all x 1 , x 2 , y 1 and y 2 are positive.
The area of parallelogram is given by:
A = 2 1 ( ( x 2 − x 1 ) ( − y 2 + y 1 ) + ( − x 1 − x 2 ) ( − y 1 − y 2 ) + ( − x 2 + x 1 ) ( y 2 − y 1 ) + ( x 1 + x 2 ) ( y 1 + y 2 ) ) = 2 ( x 1 y 2 + x 2 y 1 )
Using Cauchy-Schwarz inequality on the following.
( a x 1 ⋅ b y 2 + a x 2 ⋅ b y 1 ) 2 ⟹ x 1 y 2 + x 2 y 1 ⟹ A ≤ ( a 2 x 1 2 + b 2 y 1 2 ) ( a 2 x 2 2 + b 2 y 2 2 ) = 1 ≤ a b ≤ 2 a b
Equality occurs when x 1 = x 2 = 2 a and y 1 = y 2 = 2 b , a rectangle.