Maximum Parallelogram Area within an Ellipse

Calculus Level 4

Given the ellipse:

x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1

Two points ( x 1 , y 1 ) (x_1, y_1) and ( x 2 , y 2 ) (x_2, y_2) are chosen on it. A parallelogram is drawn using the points ( x 1 , y 1 ) (x_1, y_1) and ( x 2 , y 2 ) (x_2, y_2) and ( x 1 , y 1 ) (-x_1, -y_1) and ( x 2 , y 2 ) (-x_2, -y_2) . What is the maximum area of this parallelogram ?

a 2 + b 2 a^2 + b^2 a b ab 2 a b 2ab a 2 + b 2 \sqrt{a^2 + b^2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 20, 2016

Let the coordinates of the four vertices of the parallelogram be ( x 1 , y 1 ) (x_1, y_1) , ( x 2 , y 2 ) (x_2, -y_2) , ( x 1 , y 1 ) (-x_1, -y_1) and ( x 2 , y 2 ) (-x_2, y_2) , so that all x 1 x_1 , x 2 x_2 , y 1 y_1 and y 2 y_2 are positive.

The area of parallelogram is given by:

A = 1 2 ( ( x 2 x 1 ) ( y 2 + y 1 ) + ( x 1 x 2 ) ( y 1 y 2 ) + ( x 2 + x 1 ) ( y 2 y 1 ) + ( x 1 + x 2 ) ( y 1 + y 2 ) ) = 2 ( x 1 y 2 + x 2 y 1 ) \begin{aligned} A & = \frac 12 \left((x_2-x_1)(-y_2+y_1) + (-x_1-x_2)(-y_1-y_2) + (-x_2+x_1)(y_2-y_1) + (x_1+x_2)(y_1+y_2) \right) \\ & = 2(x_1y_2+x_2y_1) \end{aligned}

Using Cauchy-Schwarz inequality on the following.

( x 1 a y 2 b + x 2 a y 1 b ) 2 ( x 1 2 a 2 + y 1 2 b 2 ) ( x 2 2 a 2 + y 2 2 b 2 ) = 1 x 1 y 2 + x 2 y 1 a b A 2 a b \begin{aligned} \left(\frac {x_1}a \cdot \frac {y_2}b + \frac {x_2}a \cdot \frac {y_1}b\right)^2 & \le \left( \frac {x_1^2}{a^2} + \frac {y_1^2}{b^2} \right) \left( \frac {x_2^2}{a^2} + \frac {y_2^2}{b^2} \right) = 1 \\ \implies x_1y_2+x_2y_1 & \le ab \\ \implies A & \le \boxed{2ab} \end{aligned}

Equality occurs when x 1 = x 2 = a 2 x_1=x_2=\dfrac a{\sqrt 2} and y 1 = y 2 = b 2 y_1=y_2=\dfrac b{\sqrt 2} , a rectangle.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...