Maximum Power Transfer

The value of Capacitor C C required for maximum power to be transferred to the load is?
Type your answer as 1000 C = ? 1000C=? Details and Assumptions
1) V = 100 sin ( 100 t ) V=100\sin(100t)
2) R 1 = 0.5 R_{1}=0.5
3) L = 5 × 1 0 3 L=5\times10^{-3}
4) R 2 = 1 R_{2}=1
5) Consider everything in SI units.

The problem is not original.


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Carsten Meyer
Apr 23, 2021

Interesting problem for the harmonic steady state! Before we begin, we normalize all currents, voltages, time and elements by the values given below: voltages: 1 V , currents: 1 A , time: 1 s R : 1 Ω , C : 1 F , L : 1 H , P : 1 W \begin{aligned} \text{voltages:}&&&\SI{1}{V}, &&&\text{currents:}&&&\SI{1}{A},&&&\text{time:}&&&\SI{1}{s}&&& \Rightarrow &&&&R:&&&\SI{1}{\ohm}, &&& C:&&&\SI{1}{F}, &&&L:&&&\SI{1}{H},&&&P:&&&\SI{1}{W} \end{aligned} The network equations remain the same in the process, but now all currents, voltages, time and elements represent their normalized dimensionless counterparts.


Remember in single frequency harmonic steady state, the average power consumed in a (load) impedance Z L Z_L is

P = 1 2 { U L I L } = I L 2 2 ( Z L } , U L : pointer of voltage over Z L , I L : pointer of current through Z L \begin{aligned} P&=\frac{1}{2}\Re\{U_L I_L^*\}=\frac{|I_L|^2}{2}\Re(Z_L\}, &&&&&U_L:&\text{ pointer of voltage over }Z_L, &&&I_L:&\text{ pointer of current through }Z_L \end{aligned}

In the given network, our load impedance consists of R 2 , C , L R_2,\:C,\:L . We split it into real- and imaginary part: Z L = j ω L + R 2 1 j ω C = j ω L + R 2 j ω R 2 C + 1 = j ω L + R 2 j ω R 2 2 C j ω R 2 C + 1 2 ( ) \begin{aligned} Z_L&=j\omega L + R_2\|\frac{1}{j\omega C}=j\omega L + \frac{R_2}{j\omega R_2C + 1} = j\omega L + \frac{R_2 - j\omega R_2^2C}{|j\omega R_2C+1|^2} & (*) \end{aligned} We assume both U L , I L U_L,\:I_L are oriented downward. By Kirchhoff's Voltage Law (KVL) we get I L = V R 1 + Z L P = I L 2 2 { Z L } = ( ) V 2 2 R 1 + Z L 2 R 2 j ω R 2 C 2 + 1 2 = V 2 R 2 2 ( j ω L + R 1 ) ( j ω R 2 C + 1 ) + R 2 2 = V 2 R 2 j ω L + R 1 2 2 j ω L + R 1 2 ( j ω R 2 C + 1 ) + R 2 ( j ω L + R 1 ) 2 = : const 2 Q ( C ) \begin{aligned} I_L&=\frac{V}{R_1+Z_L} &&&\Rightarrow &&&& P&=\frac{|I_L|^2}{2}\Re\{Z_L\} \underset{(*)}{=} \frac{|V|^2}{ 2|R_1+Z_L|^2 }\cdot\frac{R_2}{ |j\omega R_2C_2 + 1|^2 } = \frac{|V|^2R_2}{ 2|(j\omega L + R_1)(j\omega R_2C+1) + R_2|^2 }\\[1em] &&&&&&&&& = \frac{|V|^2R_2\cdot |-j\omega L+R_1|^2}{ 2\left||j\omega L+R_1|^2(j\omega R_2C+1) + R_2(-j\omega L+R_1)\right|^2 }=:\frac{\text{const}}{2Q(C)} \end{aligned} Only the denominator still depends on C C . If we want to maximize P P , we need to minimize Q ( C ) Q(C) : Q ( C ) = ( j ω L + R 1 2 ω R 2 C ω R 2 L ) 2 + ( j ω L + R 1 2 + R 1 R 2 ) 2 ( j ω L + R 1 2 + R 1 R 2 ) 2 Q(C) = \left(|j\omega L+R_1|^2\omega R_2C-\omega R_2L\right)^2 + \left(|j\omega L+R_1|^2 + R_1R_2\right)^2\geq \left(|j\omega L+R_1|^2 + R_1R_2\right)^2 The denominator Q ( C ) Q(C) can reach its minimum if (and only if) the first square vanishes. As long as j ω L + R 1 2 ω R 2 0 |j\omega L+R_1|^2\omega R_2\neq 0 , we get j ω L + R 1 2 ω R 2 C ω R 2 L = ! 0 C = L j ω L + R 1 2 = 5 1 0 3 j 0.5 + 0.5 2 = 1 0 2 , 1000 C = 10 \begin{aligned} |j\omega L+R_1|^2\omega R_2C-\omega R_2L&\overset{!}{=}0 &&&\Rightarrow &&&& C&=\frac{L}{|j\omega L+R_1|^2} = \frac{5\cdot 10^{-3}}{|j0.5+0.5|^2}=10^{-2},& 1000C&=\boxed{10} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...